Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Logic Colloquium ’85.Jesús María Larrazabal - 1985 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 1 (1):353-353.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Proof theory of reflection.Michael Rathjen - 1994 - Annals of Pure and Applied Logic 68 (2):181-224.
    The paper contains proof-theoretic investigation on extensions of Kripke-Platek set theory, KP, which accommodate first-order reflection. Ordinal analyses for such theories are obtained by devising cut elimination procedures for infinitary calculi of ramified set theory with Пn reflection rules. This leads to consistency proofs for the theories KP+Пn reflection using a small amount of arithmetic and the well-foundedness of a certain ordinal system with respect to primitive decending sequences. Regarding future work, we intend to avail ourselves of these new cut (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Proof theory and ordinal analysis.W. Pohlers - 1991 - Archive for Mathematical Logic 30 (5-6):311-376.
    In the first part we show why ordinals and ordinal notations are naturally connected with proof theoretical research. We introduce the program of ordinal analysis. The second part gives examples of applications of ordinal analysis.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Proof-theoretic analysis of KPM.Michael Rathjen - 1991 - Archive for Mathematical Logic 30 (5-6):377-403.
    KPM is a subsystem of set theory designed to formalize a recursively Mahlo universe of sets. In this paper we show that a certain ordinal notation system is sufficient to measure the proof-theoretic strength ofKPM. This involves a detour through an infinitary calculus RS(M), for which we prove several cutelimination theorems. Full cut-elimination is available for derivations of $\Sigma (L_{\omega _1^c } )$ sentences, whereω 1 c denotes the least nonrecursive ordinal. This paper is self-contained, at least from a technical (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (2 other versions)Elementary Induction on Abstract Structures.Wayne Richter - 1979 - Journal of Symbolic Logic 44 (1):124-125.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (2 other versions)Pure proof theory aims, methods and results.Wolfram Pohlers - 1996 - Bulletin of Symbolic Logic 2 (2):159-188.
    Apologies. The purpose of the following talk is to give an overview of the present state of aims, methods and results in Pure Proof Theory. Shortage of time forces me to concentrate on my very personal views. This entails that I will emphasize the work which I know best, i.e., work that has been done in the triangle Stanford, Munich and Münster. I am of course well aware that there are as important results coming from outside this triangle and I (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Beweistheorie vonKPN.Gerhard Jäger - 1980 - Archive for Mathematical Logic 20 (1-2):53-63.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A well-ordering proof for Feferman's theoryT 0.Gerhard Jäger - 1983 - Archive for Mathematical Logic 23 (1):65-77.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • On Feferman’s operational set theory OST.Gerhard Jäger - 2007 - Annals of Pure and Applied Logic 150 (1-3):19-39.
    We study and some of its most important extensions primarily from a proof-theoretic perspective, determine their consistency strengths by exhibiting equivalent systems in the realm of traditional set theory and introduce a new and interesting extension of which is conservative over.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM. [REVIEW]Michael Rathjen - 1994 - Archive for Mathematical Logic 33 (1):35-55.
    It is shown how the strong ordinal notation systems that figure in proof theory and have been previously defined by employing large cardinals, can be developed directly on the basis of their recursively large counterparts. Thereby we provide a completely new approach to well-ordering proofs as will be exemplified by determining the proof-theoretic ordinal of the systemKPM of [R91].
    Download  
     
    Export citation  
     
    Bookmark   22 citations