Switch to: Citations

Add references

You must login to add references.
  1. Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • The proof-theoretic analysis of transfinitely iterated fixed point theories.Gerhard Jager, Reinhard Kahle, Anton Setzer & Thomas Strahm - 1999 - Journal of Symbolic Logic 64 (1):53-67.
    This article provides the proof-theoretic analysis of the transfinitely iterated fixed point theories $\widehat{ID}_\alpha and \widehat{ID}_{ the exact proof-theoretic ordinals of these systems are presented.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On the relationship between ATR 0 and.Jeremy Avigad - 1996 - Journal of Symbolic Logic 61 (3):768-779.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Reflecting on incompleteness.Solomon Feferman - 1991 - Journal of Symbolic Logic 56 (1):1-49.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • On the relation between choice and comprehension principles in second order arithmetic.Andrea Cantini - 1986 - Journal of Symbolic Logic 51 (2):360-373.
    We give a new elementary proof of the comparison theorem relating $\sum^1_{n + 1}-\mathrm{AC}\uparrow$ and $\Pi^1_n -\mathrm{CA}\uparrow$ ; the proof does not use Skolem theories. By the same method we prove: a) $\sum^1_{n + 1}-\mathrm{DC} \uparrow \equiv (\Pi^1_n -CA)_{ , for suitable classes of sentences; b) $\sum^1_{n+1}-DC \uparrow$ proves the consistency of (Π 1 n -CA) ω k, for finite k, and hence is stronger than $\sum^1_{n+1}-AC \uparrow$ . a) and b) answer a question of Feferman and Sieg.
    Download  
     
    Export citation  
     
    Bookmark   12 citations