Switch to: Citations

Add references

You must login to add references.
  1. Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • (1 other version)[Omnibus Review].Kenneth Kunen - 1969 - Journal of Symbolic Logic 34 (3):515-516.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Trees.Thomas J. Jech - 1971 - Journal of Symbolic Logic 36 (1):1-14.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • ℵ1-trees.Keith J. Devlin - 1978 - Annals of Mathematical Logic 13 (3):267-330.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • [aleph]-Trees.Keith J. Devlin - 1978 - Annals of Mathematical Logic 13 (3):267.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proper Forcing.Saharon Shelah - 1985 - Journal of Symbolic Logic 50 (1):237-239.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Iterated Cohen Extensions and Souslin's Problem.R. M. Solovay & S. Tennenbaum - 1974 - Journal of Symbolic Logic 39 (2):329-330.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Can You Take Solovay's Inaccessible Away?Saharon Shelah & Jean Raisonnier - 1989 - Journal of Symbolic Logic 54 (2):633-635.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The differences between Kurepa trees and Jech-Kunen trees.Renling Jin - 1993 - Archive for Mathematical Logic 32 (5):369-379.
    By an ω1 we mean a tree of power ω1 and height ω1. An ω1-tree is called a Kurepa tree if all its levels are countable and it has more than ω1 branches. An ω1-tree is called a Jech-Kunen tree if it has κ branches for some κ strictly between ω1 and $2^{\omega _1 }$ . In Sect. 1, we construct a model ofCH plus $2^{\omega _1 } > \omega _2$ , in which there exists a Kurepa tree with not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Essential Kurepa trees versus essential Jech–Kunen trees.Renling Jin & Saharon Shelah - 1994 - Annals of Pure and Applied Logic 69 (1):107-131.
    By an ω1-tree we mean a tree of cardinality ω1 and height ω1. An ω1-tree is called a Kurepa tree if all its levels are countable and it has more than ω1 branches. An ω1-tree is called a Jech–Kunen tree if it has κ branches for some κ strictly between ω1 and 2ω1. A Kurepa tree is called an essential Kurepa tree if it contains no Jech–Kunen subtrees. A Jech–Kunen tree is called an essential Jech–Kunen tree if it is no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation