Switch to: Citations

Add references

You must login to add references.
  1. Dp-finite fields I(A): The infinitesimals.Will Johnson - 2021 - Annals of Pure and Applied Logic 172 (6):102947.
    We prove that NIP valued fields of positive characteristic are henselian, and we begin to generalize the known results on dp-minimal fields to dp-finite fields. On any unstable dp-finite field K, we define a type-definable group of “infinitesimals,” corresponding to a canonical group topology on (K, +). We reduce the classification of positive characteristic dp-finite fields to the construction of non-trivial Aut(K/A)-invariant valuation rings.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dp-minimality: Invariant types and dp-rank.Pierre Simon - 2014 - Journal of Symbolic Logic 79 (4):1025-1045.
    This paper has two parts. In the first one, we prove that an invariant dp-minimal type is either finitely satisfiable or definable. We also prove that a definable version of the -theorem holds in dp-minimal theories of small or medium directionality.In the second part, we study dp-rank in dp-minimal theories and show that it enjoys many nice properties. It is continuous, definable in families and it can be characterised geometrically with no mention of indiscernible sequences. In particular, if the structure (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The canonical topology on dp-minimal fields.Will Johnson - 2018 - Journal of Mathematical Logic 18 (2):1850007.
    We construct a nontrivial definable type V field topology on any dp-minimal field K that is not strongly minimal, and prove that definable subsets of Kn have small boundary. Using this topology and...
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A conjectural classification of strongly dependent fields.Yatir Halevi, Assaf Hasson & Franziska Jahnke - 2019 - Bulletin of Symbolic Logic 25 (2):182-195.
    We survey the history of Shelah’s conjecture on strongly dependent fields, give an equivalent formulation in terms of a classification of strongly dependent fields and prove that the conjecture implies that every strongly dependent field has finite dp-rank.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Dp-minimal valued fields.Franziska Jahnke, Pierre Simon & Erik Walsberg - 2017 - Journal of Symbolic Logic 82 (1):151-165.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Dp-finite fields I(B): Positive characteristic.Will Johnson - 2021 - Annals of Pure and Applied Logic 172 (6):102949.
    Download  
     
    Export citation  
     
    Bookmark   3 citations