Switch to: Citations

Add references

You must login to add references.
  1. Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1361 citations  
  • Statistical Reasoning with Imprecise Probabilities.Peter Walley - 1991 - Chapman & Hall.
    An examination of topics involved in statistical reasoning with imprecise probabilities. The book discusses assessment and elicitation, extensions, envelopes and decisions, the importance of imprecision, conditional previsions and coherent statistical models.
    Download  
     
    Export citation  
     
    Bookmark   225 citations  
  • (1 other version)Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   401 citations  
  • (1 other version)Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   421 citations  
  • (1 other version)What is a mechanism? A counterfactual account.Jim Woodward - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S366-S377.
    This paper presents a counterfactual account of what a mechanism is. Mechanisms consist of parts, the behavior of which conforms to generalizations that are invariant under interventions, and which are modular in the sense that it is possible in principle to change the behavior of one part independently of the others. Each of these features can be captured by the truth of certain counterfactuals.
    Download  
     
    Export citation  
     
    Bookmark   193 citations  
  • Emergent Chance.Christian List & Marcus Pivato - 2015 - Philosophical Review 124 (1):119-152.
    We offer a new argument for the claim that there can be non-degenerate objective chance (“true randomness”) in a deterministic world. Using a formal model of the relationship between different levels of description of a system, we show how objective chance at a higher level can coexist with its absence at a lower level. Unlike previous arguments for the level-specificity of chance, our argument shows, in a precise sense, that higher-level chance does not collapse into epistemic probability, despite higher-level properties (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • (1 other version)Imprecise Probabilities.Seamus Bradley - 2019 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)What Is a Mechanism? A Counterfactual Account.James Woodward - 2002 - Philosophy of Science 69 (S3):S366-S377.
    This paper presents a counterfactual account of what a mechanism is. Mechanisms consist of parts, the behavior of which conforms to generalizations that are invariant under interventions, and which are modular in the sense that it is possible in principle to change the behavior of one part independently of the others. Each of these features can be captured by the truth of certain counterfactuals.
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • Independence, invariance and the causal Markov condition.Daniel M. Hausman & James Woodward - 1999 - British Journal for the Philosophy of Science 50 (4):521-583.
    This essay explains what the Causal Markov Condition says and defends the condition from the many criticisms that have been launched against it. Although we are skeptical about some of the applications of the Causal Markov Condition, we argue that it is implicit in the view that causes can be used to manipulate their effects and that it cannot be surrendered without surrendering this view of causation.
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • (1 other version)Imprecise Probabilities.Seamus Bradley - 2019 - In Claus Beisbart & Nicole J. Saam (eds.), Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives. Springer Verlag. pp. 525-540.
    This chapter explores the topic of imprecise probabilities as it relates to model validation. IP is a family of formal methods that aim to provide a better representationRepresentation of severe uncertainty than is possible with standard probabilistic methods. Among the methods discussed here are using sets of probabilities to represent uncertainty, and using functions that do not satisfy the additvity property. We discuss the basics of IP, some examples of IP in computer simulation contexts, possible interpretations of the IP framework (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Resolving Peer Disagreements Through Imprecise Probabilities.Lee Elkin & Gregory Wheeler - 2018 - Noûs 52 (2):260-278.
    Two compelling principles, the Reasonable Range Principle and the Preservation of Irrelevant Evidence Principle, are necessary conditions that any response to peer disagreements ought to abide by. The Reasonable Range Principle maintains that a resolution to a peer disagreement should not fall outside the range of views expressed by the peers in their dispute, whereas the Preservation of Irrelevant Evidence Principle maintains that a resolution strategy should be able to preserve unanimous judgments of evidential irrelevance among the peers. No standard (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Coherent choice functions under uncertainty.Teddy Seidenfeld, Mark J. Schervish & Joseph B. Kadane - 2010 - Synthese 172 (1):157-176.
    We discuss several features of coherent choice functions—where the admissible options in a decision problem are exactly those that maximize expected utility for some probability/utility pair in fixed set S of probability/utility pairs. In this paper we consider, primarily, normal form decision problems under uncertainty—where only the probability component of S is indeterminate and utility for two privileged outcomes is determinate. Coherent choice distinguishes between each pair of sets of probabilities regardless the “shape” or “connectedness” of the sets of probabilities. (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Sets of probability distributions, independence, and convexity.Fabio G. Cozman - 2012 - Synthese 186 (2):577-600.
    This paper analyzes concepts of independence and assumptions of convexity in the theory of sets of probability distributions. The starting point is Kyburg and Pittarelli’s discussion of “convex Bayesianism” (in particular their proposals concerning E-admissibility, independence, and convexity). The paper offers an organized review of the literature on independence for sets of probability distributions; new results on graphoid properties and on the justification of “strong independence” (using exchangeability) are presented. Finally, the connection between Kyburg and Pittarelli’s results and recent developments (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A comparison of three Occam’s razors for Markovian causal models.Jiji Zhang - 2013 - British Journal for the Philosophy of Science 64 (2):423-448.
    The framework of causal Bayes nets, currently influential in several scientific disciplines, provides a rich formalism to study the connection between causality and probability from an epistemological perspective. This article compares three assumptions in the literature that seem to constrain the connection between causality and probability in the style of Occam's razor. The trio includes two minimality assumptions—one formulated by Spirtes, Glymour, and Scheines (SGS) and the other due to Pearl—and the more well-known faithfulness or stability assumption. In terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Reichenbach’s Paradise Constructing the Realm of Probabilistic Common “Causes”.Leszek Wronski - 2014 - Berlin: De Gruyter Open.
    Since its first introduction by Hans Reichenbach, many philosophers have claimed to refute the common cause principle. The situation is not so straightforward, though: validity of the principle remains an open question. The book traces different formulations of the principle, and provides proofs of a few pertinent theorems, settling the relevant questions in various probability spaces. It offers both philosophical insight and mathematical rigor.
    Download  
     
    Export citation  
     
    Bookmark   6 citations