Switch to: Citations

Add references

You must login to add references.
  1. Less is Different: Emergence and Reduction Reconciled. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):1065-1135.
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each (...)
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Emergence, Reduction and Supervenience: A Varied Landscape. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):920-959.
    This is one of two papers about emergence, reduction and supervenience. It expounds these notions and analyses the general relations between them. The companion paper analyses the situation in physics, especially limiting relations between physical theories. I shall take emergence as behaviour that is novel and robust relative to some comparison class. I shall take reduction as deduction using appropriate auxiliary definitions. And I shall take supervenience as a weakening of reduction, viz. to allow infinitely long definitions. The overall claim (...)
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Emergence, Singularities, and Symmetry Breaking.Robert W. Batterman - 2011 - Foundations of Physics 41 (6):1031-1050.
    This paper looks at emergence in physical theories and argues that an appropriate way to understand socalled “emergent protectorates” is via the explanatory apparatus of the renormalization group. It is argued that mathematical singularities play a crucial role in our understanding of at least some well-defined emergent features of the world.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Mind, Language and Reality: Philosophical Papers.Hilary Putnam - 1975 - New York: Cambridge University Press.
    Professor Hilary Putnam has been one of the most influential and sharply original of recent American philosophers in a whole range of fields. His most important published work is collected here, together with several new and substantial studies, in two volumes. The first deals with the philosophy of mathematics and of science and the nature of philosophical and scientific enquiry; the second deals with the philosophy of language and mind. Volume one is now issued in a new edition, including an (...)
    Download  
     
    Export citation  
     
    Bookmark   545 citations  
  • Depth: An Account of Scientific Explanation.Michael Strevens - 2008 - Cambridge, Mass.: Harvard University Press.
    Approaches to explanation -- Causal and explanatory relevance -- The kairetic account of /D making -- The kairetic account of explanation -- Extending the kairetic account -- Event explanation and causal claims -- Regularity explanation -- Abstraction in regularity explanation -- Approaches to probabilistic explanation -- Kairetic explanation of frequencies -- Kairetic explanation of single outcomes -- Looking outward -- Looking inward.
    Download  
     
    Export citation  
     
    Bookmark   476 citations  
  • (1 other version)The devil in the details: asymptotic reasoning in explanation, reduction, and emergence.Robert W. Batterman - 2002 - New York: Oxford University Press.
    Robert Batterman examines a form of scientific reasoning called asymptotic reasoning, arguing that it has important consequences for our understanding of the scientific process as a whole. He maintains that asymptotic reasoning is essential for explaining what physicists call universal behavior. With clarity and rigor, he simplifies complex questions about universal behavior, demonstrating a profound understanding of the underlying structures that ground them. This book introduces a valuable new method that is certain to fill explanatory gaps across disciplines.
    Download  
     
    Export citation  
     
    Bookmark   265 citations  
  • (1 other version)Infinite systems in SM explanations: Thermodynamic limit, renormalization (semi-) groups, and irreversibility.Chuang Liu - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S325-.
    This paper examines the justifications for using infinite systems to 'recover' thermodynamic properties, such as phase transitions (PT), critical phenomena (CP), and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit (TL) to recover PT and in using renormalization (semi-) group approach (RG) to explain the universality of critical exponents. Section 3 examines various possible justifications for taking TL on physically finite systems. Section 4 discusses the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Probability, explanation, and information.Peter Railton - 1981 - Synthese 48 (2):233 - 256.
    Download  
     
    Export citation  
     
    Bookmark   152 citations  
  • Explaining the emergence of cooperative phenomena.Chuang Liu - 1999 - Philosophy of Science 66 (3):106.
    Phase transitions are well-understood phenomena in thermodynamics (TD), but it turns out that they are mathematically impossible in finite SM systems. Hence, phase transitions are truly emergent properties. They appear again at the thermodynamic limit (TL), i.e., in infinite systems. However, most, if not all, systems in which they occur are finite, so whence comes the justification for taking TL? The problem is then traced back to the TD characterization of phase transitions, and it turns out that the characterization is (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Explanatory instability.Robert W. Batterman - 1992 - Noûs 26 (3):325-348.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Mind, Language and Reality.[author unknown] - 1975 - Tijdschrift Voor Filosofie 39 (2):361-362.
    Download  
     
    Export citation  
     
    Bookmark   508 citations  
  • Idealization and modeling.Robert W. Batterman - 2009 - Synthese 169 (3):427-446.
    This paper examines the role of mathematical idealization in describing and explaining various features of the world. It examines two cases: first, briefly, the modeling of shock formation using the idealization of the continuum. Second, and in more detail, the breaking of droplets from the points of view of both analytic fluid mechanics and molecular dynamical simulations at the nano-level. It argues that the continuum idealizations are explanatorily ineliminable and that a full understanding of certain physical phenomena cannot be obtained (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • More is different.P. W. Anderson - 1994 - In H. Gutfreund & G. Toulouse (eds.), Biology and Computation: A Physicist's Choice. World Scientific. pp. 3--21.
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Philosophy and our mental life.Hilary Putnam - 1975 - In Mind, Language and Reality: Philosophical Papers. New York: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • Galilean Idealization.Ernan McMullin - 1985 - Studies in History and Philosophy of Science Part A 16 (3):247.
    Download  
     
    Export citation  
     
    Bookmark   316 citations  
  • Probabilities in Statistical Mechanics: What are they?Wayne C. Myrvold - 2012
    This paper addresses the question of how we should regard the probability distributions introduced into statistical mechanics. It will be argued that it is problematic to take them either as purely ontic, or purely epistemic. I will propose a third alternative: they are almost objective probabilities, or epistemic chances. The definition of such probabilities involves an interweaving of epistemic and physical considerations, and thus they cannot be classified as either purely epistemic or purely ontic. This conception, it will be argued, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Whose Devil? Which Details?Gordon Belot - 2005 - Philosophy of Science 72 (1):128-153.
    Batterman has recently argued that fundamental theories are typically explanatorily inadequate, in that there exist physical phenomena whose explanation requires that the conceptual apparatus of a fundamental theory be supplemented by that of a less fundamental theory. This paper is an extended critical commentary on that argument: situating its importance, describing its structure, and developing a line of objection to it. The objection is that in the examples Batterman considers, the mathematics of the less fundamental theory is definable in terms (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Asymptotics and the role of minimal models.Robert W. Batterman - 2002 - British Journal for the Philosophy of Science 53 (1):21-38.
    A traditional view of mathematical modeling holds, roughly, that the more details of the phenomenon being modeled that are represented in the model, the better the model is. This paper argues that often times this ‘details is better’ approach is misguided. One ought, in certain circumstances, to search for an exactly solvable minimal model—one which is, essentially, a caricature of the physics of the phenomenon in question.
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Response to Belot’s “Whose Devil? Which Details?‘.Robert W. Batterman - 2005 - Philosophy of Science 72 (1):154-163.
    I respond to Belot's argument and defend the view that sometimes `fundamental theories' are explanatorily inadequate and need to be supplemented with certain aspects of less fundamental `theories emeritus'.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Phase Transitions in Finite Systems.Paul Mainwood - unknown
    This paper examines the apparent paradox in the fact that all successful theoretical treatments of phase transitions require an infinite system, yet they are clearly seen to occur in finite systems in the real world. A simple resolution is offered, and the paper ends with a consideration of analogies that can be taken in interpretations of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Is More Different? Emergent Properties in Physics.Paul Mainwood - unknown
    This thesis gives a philosophical assessment of a contemporary movement, influential amongst physicists, about the status of microscopic and macroscopic properties. The fountainhead for the movement was a short 1972 paper `More is Different', written by the condensed-matter physicist, Philip Anderson. Each of the chapters is concerned with themes mentioned in that paper, or subsequently expounded by Anderson and his followers. In Chapter 1, I aim to locate Anderson's existence claims for `emergent properties' within the metaphysical, epistemological and methodological doctrines (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Infinite Systems in SM Explanations: Thermodynamic Limit, Renormalization (semi-) Groups, and Irreversibility.Chuang Liu - 2001 - Philosophy of Science 68 (S3):S325-S344.
    This paper examines the justifications for using infinite systems to ‘recover’ thermodynamic properties, such as phase transitions, critical phenomena, and irreversibility, from the micro-structure of matter in bulk. Section 2 is a summary of such rigorous methods as in taking the thermodynamic limit to recover PT and in using renormalization group approach to explain the universality of critical exponents. Section 3 examines various possible justifications for taking TL on physically finite systems. Section 4 discusses the legitimacy of applying TL to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Taking Thermodynamics Too Seriously.Craig Callender - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):539-553.
    This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Emergence and Reduction Combined in Phase Transitions.Jeremy Butterfield & Nazim Bouatta - unknown
    In another paper, one of us argued that emergence and reduction are compatible, and presented four examples illustrating both. The main purpose of this paper is to develop this position for the example of phase transitions. We take it that emergence involves behaviour that is novel compared with what is expected: often, what is expected from a theory of the system's microscopic constituents. We take reduction as deduction, aided by appropriate definitions. Then the main idea of our reconciliation of emergence (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations