Switch to: Citations

Add references

You must login to add references.
  1. On representing concepts in finite models.Marcin Mostowski - 2001 - Mathematical Logic Quarterly 47 (4):513-523.
    We present a method of transferring Tarski's technique of classifying finite order concepts by means of truth-definitions into finite mode theory. The other considered question is the problem of representability relations on words or natural numbers in finite models. We prove that relations representable in finite models are exactly those which are of degree ≤ o′. Finally, we consider theories of sufficiently large finite models. For a given theory T we define sl as the set of all sentences true in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Arity and alternation in second-order logic.J. A. Makowsky & Y. B. Pnueli - 1994 - Annals of Pure and Applied Logic 78 (1-3):189-202.
    We investigate the expressive power of second-order logic over finite structures, when two limitations are imposed. Let SAA ) be the set of second-order formulas such that the arity of the relation variables is bounded by k and the number of alternations of second-order quantification is bounded by n . We show that this imposes a proper hierarchy on second-order logic, i.e. for every k , n there are problems not definable in AA but definable in AA for some c (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Succinctness as a source of complexity in logical formalisms.Georg Gottlob, Nicola Leone & Helmut Veith - 1999 - Annals of Pure and Applied Logic 97 (1-3):231-260.
    The often observed complexity gap between the expressiveness of a logical formalism and its exponentially harder expression complexity is proven for all logical formalisms which satisfy natural closure conditions. The expression complexity of the prefix classes of second-order logic can thus be located in the corresponding classes of the weak exponential hierarchies; further results about expression complexity in database theory, logic programming, nonmonotonic reasoning, first-order logic with Henkin quantifiers and default logic are concluded. The proof method illustrates the significance of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Normal forms for second-order logic over finite structures, and classification of NP optimization problems.Thomas Eiter, Georg Gottlob & Yuri Gurevich - 1996 - Annals of Pure and Applied Logic 78 (1-3):111-125.
    We start with a simple proof of Leivant's normal form theorem for ∑11 formulas over finite successor structures. Then we use that normal form to prove the following:1. over all finite structures, every ∑21 formula is equivalent to a ∑21 formula whose first-order part is a Boolean combination of existential formulas, and2. over finite successor structures, the Kolaitis-Thakur hierarchy of minimization problems collapses completely and the Kolaitis-Thakur hierarchy of maximization problems collapses partially.The normal form theorem for ∑21 fails if ∑21 (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations