Switch to: Citations

Add references

You must login to add references.
  1. Independence of Boolean algebras and forcing.Miloš S. Kurilić - 2003 - Annals of Pure and Applied Logic 124 (1-3):179-191.
    If κω is a cardinal, a complete Boolean algebra is called κ-dependent if for each sequence bβ: β<κ of elements of there exists a partition of the unity, P, such that each pP extends bβ or bβ′, for κ-many βκ. The connection of this property with cardinal functions, distributivity laws, forcing and collapsing of cardinals is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing indestructibility of MAD families.Jörg Brendle & Shunsuke Yatabe - 2005 - Annals of Pure and Applied Logic 132 (2):271-312.
    Let A[ω]ω be a maximal almost disjoint family and assume P is a forcing notion. Say A is P-indestructible if A is still maximal in any P-generic extension. We investigate P-indestructibility for several classical forcing notions P. In particular, we provide a combinatorial characterization of P-indestructibility and, assuming a fragment of MA, we construct maximal almost disjoint families which are P-indestructible yet Q-destructible for several pairs of forcing notions . We close with a detailed investigation of iterated Sacks indestructibility.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • There may be simple Pℵ1 and Pℵ2-points and the Rudin-Keisler ordering may be downward directed.Andreas Blass & Saharon Shelah - 1987 - Annals of Pure and Applied Logic 33 (C):213-243.
    Download  
     
    Export citation  
     
    Bookmark   48 citations