Switch to: Citations

Add references

You must login to add references.
  1. Review: H. Jerome Keisler, Model Theory. [REVIEW]C. C. Chang - 1973 - Journal of Symbolic Logic 38 (4):648-648.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Forcing by non-scattered sets.Miloš S. Kurilić & Stevo Todorčević - 2012 - Annals of Pure and Applied Logic 163 (9):1299-1308.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Model Theory.Michael Makkai, C. C. Chang & H. J. Keisler - 1991 - Journal of Symbolic Logic 56 (3):1096.
    Download  
     
    Export citation  
     
    Bookmark   410 citations  
  • Posets of copies of countable scattered linear orders.Miloš S. Kurilić - 2014 - Annals of Pure and Applied Logic 165 (3):895-912.
    We show that the separative quotient of the poset 〈P,⊂〉 of isomorphic suborders of a countable scattered linear order L is σ-closed and atomless. So, under the CH, all these posets are forcing-equivalent /Fin)+).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Maximally embeddable components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
    We investigate the partial orderings of the form 〈P(X),⊂〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb{P}(\mathbb{X}), \subset \rangle}$$\end{document}, where X=〈X,ρ〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X} =\langle X, \rho \rangle }$$\end{document} is a countable binary relational structure and P(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} (\mathbb{X})}$$\end{document} the set of the domains of its isomorphic substructures and show that if the components of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
    We study the partial orderings of the form ⟨P,⊂⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb{P}, \subset\rangle}$$\end{document}, where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} is a binary relational structure with the connectivity components isomorphic to a strongly connected structure Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Y}}$$\end{document} and P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} }$$\end{document} is the set of substructures of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • From a1 to d5: Towards a forcing-related classification of relational structures.Miloš S. Kurilić - 2014 - Journal of Symbolic Logic 79 (1):279-295.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Different similarities.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (7-8):839-859.
    We establish the hierarchy among twelve equivalence relations on the class of relational structures: the equality, the isomorphism, the equimorphism, the full relation, four similarities of structures induced by similarities of their self-embedding monoids and intersections of these equivalence relations. In particular, fixing a language L and a cardinal κ, we consider the interplay between the restrictions of these similarities to the class ModL of all L-structures of size κ. It turns out that, concerning the number of different similarities and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations