Switch to: Citations

References in:

A modal perspective on monadic second-order alternation hierarchies

In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 231-247 (1998)

Add references

You must login to add references.
  1. Hybrid Logics: Characterization, Interpolation and Complexity.Carlos Areces, Patrick Blackburn & Maarten Marx - 2001 - Journal of Symbolic Logic 66 (3):977-1010.
    Hybrid languages are expansions of propositional modal languages which can refer to worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work has focussed on a more constrained system called $\mathscr{H}$. We show in detail that $\mathscr{H}$ is modally natural. We begin by studying its expressivity, and provide model theoretic characterizations and a syntactic characterization. The key result to emerge is that $\mathscr{H}$ corresponds to the fragment of first-order logic which is invariant for generated (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Interpolation for first order S5.Melvin Fitting - 2002 - Journal of Symbolic Logic 67 (2):621-634.
    An interpolation theorem holds for many standard modal logics, but first order $S5$ is a prominent example of a logic for which it fails. In this paper it is shown that a first order $S5$ interpolation theorem can be proved provided the logic is extended to contain propositional quantifiers. A proper statement of the result involves some subtleties, but this is the essence of it.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On modal logic with propositional quantifiers.R. A. Bull - 1969 - Journal of Symbolic Logic 34 (2):257-263.
    I am interested in extending modal calculi by adding propositional quantifiers, given by the rules for quantifier introduction: provided that p does not occur free in A.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)A completeness theorem in modal logic.Saul Kripke - 1959 - Journal of Symbolic Logic 24 (1):1-14.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • Expressivity of second order propositional modal logic.Balder ten Cate - 2006 - Journal of Philosophical Logic 35 (2):209-223.
    We consider second-order propositional modal logic (SOPML), an extension of the basic modal language with propositional quantifiers introduced by Kit Fine in 1970. We determine the precise expressive power of SOPML by giving analogues of the Van Benthem–Rosen theorem and the Goldblatt Thomason theorem. Furthermore, we show that the basic modal language is the bisimulation invariant fragment of SOPML, and we characterize the bounded fragment of first-order logic as being the intersection of first-order logic and SOPML.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Defining relevant implication in a propositionally quantified S.Philip Kremer - 1997 - Journal of Symbolic Logic 62 (4):1057-1069.
    R. K. Meyer once gave precise form to the question of whether relevant implication can be defined in any modal system, and his answer was `no'. In the present paper, we extend S4, first with propositional quantifiers, to the system S4π+; and then with definite propositional descriptions, to the system S4π+ lp . We show that relevant implication can in some sense be defined in the modal system S4π+ lp , although it cannot be defined in S4π+.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the complexity of propositional quantification in intuitionistic logic.Philip Kremer - 1997 - Journal of Symbolic Logic 62 (2):529-544.
    We define a propositionally quantified intuitionistic logic Hπ + by a natural extension of Kripke's semantics for propositional intutionistic logic. We then show that Hπ+ is recursively isomorphic to full second order classical logic. Hπ+ is the intuitionistic analogue of the modal systems S5π +, S4π +, S4.2π +, K4π +, Tπ +, Kπ + and Bπ +, studied by Fine.
    Download  
     
    Export citation  
     
    Bookmark   22 citations