Switch to: References

Add citations

You must login to add citations.
  1. Decidability of quantified propositional intuitionistic logic and s4 on trees of height and arity ≤ω.Richard Zach - 2004 - Journal of Philosophical Logic 33 (2):155-164.
    Quantified propositional intuitionistic logic is obtained from propositional intuitionistic logic by adding quantifiers ∀p, ∃p, where the propositional variables range over upward-closed subsets of the set of worlds in a Kripke structure. If the permitted accessibility relations are arbitrary partial orders, the resulting logic is known to be recursively isomorphic to full second-order logic (Kremer, 1997). It is shown that if the Kripke structures are restricted to trees of at height and width at most ω, the resulting logics are decidable. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Logic of Belief and Propositional Quantification.Yifeng Ding - 2021 - Journal of Philosophical Logic 50 (5):1143-1198.
    We consider extending the modal logic KD45, commonly taken as the baseline system for belief, with propositional quantifiers that can be used to formalize natural language sentences such as “everything I believe is true” or “there is something that I neither believe nor disbelieve.” Our main results are axiomatizations of the logics with propositional quantifiers of natural classes of complete Boolean algebras with an operator validating KD45. Among them is the class of complete, atomic, and completely multiplicative BAOs validating KD45. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Fine on the Possibility of Vagueness.Andreas Ditter - forthcoming - In Federico L. G. Faroldi & Frederik Van De Putte (eds.), Outstanding Contributions to Logic: Kit Fine. Springer.
    Fine (2017) proposes a new logic of vagueness, CL, that promises to provide both a solution to the sorites paradox and a way to avoid the impossibility result from Fine (2008). The present paper presents a challenge to his new theory of vagueness. I argue that the possibility theorem stated in Fine (2017), as well as his solution to the sorites paradox, fail in certain reasonable extensions of the language of CL. More specifically, I show that if we extend the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform interpolation and the existence of sequent calculi.Rosalie Iemhoff - 2019 - Annals of Pure and Applied Logic 170 (11):102711.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Note on Algebraic Semantics for $mathsf{S5}$ with Propositional Quantifiers.Wesley H. Holliday - 2019 - Notre Dame Journal of Formal Logic 60 (2):311-332.
    In two of the earliest papers on extending modal logic with propositional quantifiers, R. A. Bull and K. Fine studied a modal logic S5Π extending S5 with axioms and rules for propositional quantification. Surprisingly, there seems to have been no proof in the literature of the completeness of S5Π with respect to its most natural algebraic semantics, with propositional quantifiers interpreted by meets and joins over all elements in a complete Boolean algebra. In this note, we give such a proof. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uniform Interpolation and Propositional Quantifiers in Modal Logics.Marta Bílková - 2007 - Studia Logica 85 (1):1-31.
    We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts’ proof of uniform interpolationin intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter.Mikhail Rybakov & Dmitry Shkatov - 2018 - Studia Logica 107 (4):695-717.
    We prove that the positive fragment of first-order intuitionistic logic in the language with two individual variables and a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals \ and \, where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser’s basic and formal logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Variations on the Kripke Trick.Mikhail Rybakov & Dmitry Shkatov - forthcoming - Studia Logica:1-48.
    In the early 1960s, to prove undecidability of monadic fragments of sublogics of the predicate modal logic $$\textbf{QS5}$$ QS 5 that include the classical predicate logic $$\textbf{QCl}$$ QCl, Saul Kripke showed how a classical atomic formula with a binary predicate letter can be simulated by a monadic modal formula. We consider adaptations of Kripke’s simulation, which we call the Kripke trick, to various modal and superintuitionistic predicate logics not considered by Kripke. We also discuss settings where the Kripke trick does (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness of second-order propositional s4 and H in topological semantics.Philip Kremer - 2018 - Review of Symbolic Logic 11 (3):507-518.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A secondary semantics for Second Order Intuitionistic Propositional Logic.Mauro Ferrari, Camillo Fiorentini & Guido Fiorino - 2004 - Mathematical Logic Quarterly 50 (2):202-210.
    In this paper we propose a Kripke-style semantics for second order intuitionistic propositional logic and we provide a semantical proof of the disjunction and the explicit definability property. Moreover, we provide a tableau calculus which is sound and complete with respect to such a semantics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantified Multimodal Logics in Simple Type Theory.Christoph Benzmüller & Lawrence C. Paulson - 2013 - Logica Universalis 7 (1):7-20.
    We present an embedding of quantified multimodal logics into simple type theory and prove its soundness and completeness. A correspondence between QKπ models for quantified multimodal logics and Henkin models is established and exploited. Our embedding supports the application of off-the-shelf higher-order theorem provers for reasoning within and about quantified multimodal logics. Moreover, it provides a starting point for further logic embeddings and their combinations in simple type theory.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Propositional Quantification in the Topological Semantics for S.Philip Kremer - 1997 - Notre Dame Journal of Formal Logic 38 (2):295-313.
    Fine and Kripke extended S5, S4, S4.2 and such to produce propositionally quantified systems , , : given a Kripke frame, the quantifiers range over all the sets of possible worlds. is decidable and, as Fine and Kripke showed, many of the other systems are recursively isomorphic to second-order logic. In the present paper I consider the propositionally quantified system that arises from the topological semantics for S4, rather than from the Kripke semantics. The topological system, which I dub , (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Expressivity of second order propositional modal logic.Balder ten Cate - 2006 - Journal of Philosophical Logic 35 (2):209-223.
    We consider second-order propositional modal logic (SOPML), an extension of the basic modal language with propositional quantifiers introduced by Kit Fine in 1970. We determine the precise expressive power of SOPML by giving analogues of the Van Benthem–Rosen theorem and the Goldblatt Thomason theorem. Furthermore, we show that the basic modal language is the bisimulation invariant fragment of SOPML, and we characterize the bounded fragment of first-order logic as being the intersection of first-order logic and SOPML.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Axiomatizability of Propositionally Quantified Modal Logics on Relational Frames.Peter Fritz - 2024 - Journal of Symbolic Logic 89 (2):758-793.
    Propositional modal logic over relational frames is naturally extended with propositional quantifiers by letting them range over arbitrary sets of worlds of the relevant frame. This is also known as second-order propositional modal logic. The propositionally quantified modal logic of a class of relational frames is often not axiomatizable, although there are known exceptions, most notably the case of frames validating the strong modal logic $\mathrm {S5}$. Here, we develop new general methods with which many of the open questions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Second-order propositional modal logic and monadic alternation hierarchies.Antti Kuusisto - 2015 - Annals of Pure and Applied Logic 166 (1):1-28.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mereotopology in 2nd-Order and Modal Extensions of Intuitionistic Propositional Logic.Paolo Torrini, John G. Stell & Brandon Bennett - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):495-525.
    We show how mereotopological notions can be expressed by extending intuitionistic propositional logic with propositional quantification and a strong modal operator. We first prove completeness for the logics wrt Kripke models; then we trace the correspondence between Kripke models and topological spaces that have been enhanced with an explicit notion of expressible region. We show how some qualitative spatial notions can be expressed in topological terms. We use the semantical and topological results in order to show how in some extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A modal perspective on monadic second-order alternation hierarchies.Antti Kuusisto - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 231-247.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logics for propositional contingentism.Peter Fritz - 2017 - Review of Symbolic Logic 10 (2):203-236.
    Robert Stalnaker has recently advocated propositional contingentism, the claim that it is contingent what propositions there are. He has proposed a philosophical theory of contingency in what propositions there are and sketched a possible worlds model theory for it. In this paper, such models are used to interpret two propositional modal languages: one containing an existential propositional quantifier, and one containing an existential propositional operator. It is shown that the resulting logic containing an existential quantifier is not recursively axiomatizable, as (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Pitts' Quantifiers Are Not Topological Quantification.Tomasz Połacik - 1998 - Notre Dame Journal of Formal Logic 39 (4):531-544.
    We show that Pitts' modeling of propositional quantification in intuitionistic logic (as the appropriate interpolants) does not coincide with the topological interpretation. This contrasts with the case of the monadic language and the interpretation over sufficiently regular topological spaces. We also point to the difference between the topological interpretation over sufficiently regular spaces and the interpretation of propositional quantifiers in Kripke models.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-axiomatizable second order intuitionistic propositional logic.D. Skvortsov - 1997 - Annals of Pure and Applied Logic 86 (1):33-46.
    The second order intuitionistic propositional logic characterized by the class of all “principal” Kripke frames is non-recursively axiomatizable, as well as any logic of a class of principal Kripke frames containing every finite frame.
    Download  
     
    Export citation  
     
    Bookmark   5 citations