Switch to: Citations

Add references

You must login to add references.
  1. The nurture of nature: Hereditary plasticity in evolution.Ehud Lamm & Eva Jablonka - 2008 - Philosophical Psychology 21 (3):305 – 319.
    The dichotomy between Nature and Nurture, which has been dismantled within the framework of development, remains embodied in the notions of plasticity and evolvability. We argue that plasticity and evolvability, like development and heredity, are neither dichotomous nor distinct: the very same mechanisms may be involved in both, and the research perspective chosen depends to a large extent on the type of problem being explored and the kinds of questions being asked. Epigenetic inheritance leads to transgenerationally extended plasticity, and developmentally-induced (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Genome Informatics: The Role of DNA in Cellular Computations.James A. Shapiro - 2006 - Biological Theory 1 (3):288-301.
    Cells are cognitive entities possessing great computational power. DNA serves as a multivalent information storage medium for these computations at various time scales. Information is stored in sequences, epigenetic modifications, and rapidly changing nucleoprotein complexes. Because DNA must operate through complexes formed with other molecules in the cell, genome functions are inherently interactive and involve two-way communication with various cellular compartments. Both coding sequences and repetitive sequences contribute to the hierarchical systemic organization of the genome. By virtue of nucleoprotein complexes, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • From replicators to heritably varying phenotypic traits: The extended phenotype revisited. [REVIEW]E. Jablonka - 2004 - Biology and Philosophy 19 (3):353-375.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Self-Extending Symbiosis: A Mechanism for Increasing Robustness Through Evolution.Hiroaki Kitano & Kanae Oda - 2006 - Biological Theory 1 (1):61-66.
    Robustness is a fundamental property of biological systems, observed ubiquitously across species and at different levels of organization from gene regulation to ecosystem. The theory of biological robustness argues that robustness fosters evolv-ability and that together they entail various tradeoffs as well as characteristic architectures and mechanisms. We argue that classes of biological systems have evolved to enhance their robustness by extending their system boundary through a series of symbioses with foreign biological entities . A series of major biological innovations (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Development, culture, and the units of inheritance.James Griesemer - 2000 - Philosophy of Science 67 (3):368.
    Developmental systems theory (DST) expands the unit of replication from genes to whole systems of developmental resources, which DST interprets in terms of cycling developmental processes. Expansion seems required by DST's argument against privileging genes in evolutionary and developmental explanations of organic traits. DST and the expanded replicator brook no distinction between biological and cultural evolution. However, by endorsing a single expanded unit of inheritance and leaving the classical molecular notion of gene intact, DST achieves only a nominal reunification of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • How do endosymbionts become organelles? Understanding early events in plastid evolution.Debashish Bhattacharya, John M. Archibald, Andreas Pm Weber & Adrian Reyes‐Prieto - 2007 - Bioessays 29 (12):1239-1246.
    What factors drove the transformation of the cyanobacterial progenitor of plastids (e.g. chloroplasts) from endosymbiont to bona fide organelle? This question lies at the heart of organelle genesis because, whereas intracellular endosymbionts are widespread in both unicellular and multicellular eukaryotes (e.g. rhizobial bacteria, Chlorella cells in ciliates, Buchnera in aphids), only two canonical eukaryotic organelles of endosymbiotic origin are recognized, the plastids of algae and plants and the mitochondrion. Emerging data on (1) the discovery of non‐canonical plastid protein targeting, (2) (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience.William Bechtel - 2007 - Psychology Press.
    A variety of scientific disciplines have set as their task explaining mental activities, recognizing that in some way these activities depend upon our brain. But, until recently, the opportunities to conduct experiments directly on our brains were limited. As a result, research efforts were split between disciplines such as cognitive psychology, linguistics, and artificial intelligence that investigated behavior, while disciplines such as neuroanatomy, neurophysiology, and genetics experimented on the brains of non-human animals. In recent decades these disciplines integrated, and with (...)
    Download  
     
    Export citation  
     
    Bookmark   248 citations