Switch to: Citations

Add references

You must login to add references.
  1. The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • (1 other version)Conjectures of Rado and Chang and special Aronszajn trees.Stevo Todorčević & Víctor Torres Pérez - 2012 - Mathematical Logic Quarterly 58 (4-5):342-347.
    We show that both Rado's Conjecture and strong Chang's Conjecture imply that there are no special ℵ2-Aronszajn trees if the Continuum Hypothesis fails. We give similar result for trees of higher heights and we also investigate the influence of Rado's Conjecture on square sequences.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fresh subsets of ultrapowers.Assaf Shani - 2016 - Archive for Mathematical Logic 55 (5-6):835-845.
    Shelah and Stanley :887–897, 1988) constructed a κ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^+$$\end{document}-Aronszjan tree with an ascent path using □κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square _{\kappa }$$\end{document}. We show that □κ,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square _{\kappa,2}$$\end{document} does not imply the existence of Aronszajn trees with ascent paths. The proof goes through an intermediate combinatorial principle, which we investigate further.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Characterizing large cardinals in terms of layered posets.Sean Cox & Philipp Lücke - 2017 - Annals of Pure and Applied Logic 168 (5):1112-1131.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aronszajn trees, square principles, and stationary reflection.Chris Lambie-Hanson - 2017 - Mathematical Logic Quarterly 63 (3-4):265-281.
    We investigate questions involving Aronszajn trees, square principles, and stationary reflection. We first consider two strengthenings of introduced by Brodsky and Rinot for the purpose of constructing κ‐Souslin trees. Answering a question of Rinot, we prove that the weaker of these strengthenings is compatible with stationary reflection at κ but the stronger is not. We then prove that, if μ is a singular cardinal, implies the existence of a special ‐tree with a cf(μ)‐ascent path, thus answering a question of Lücke.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Conjectures of Rado and Chang and special Aronszajn trees.Stevo Todorčević & Víctor Torres Pérez - 2012 - Mathematical Logic Quarterly 58 (4):342-347.
    We show that both Rado's Conjecture and strong Chang's Conjecture imply that there are no special ℵ2-Aronszajn trees if the Continuum Hypothesis fails. We give similar result for trees of higher heights and we also investigate the influence of Rado's Conjecture on square sequences.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Chain conditions of products, and weakly compact cardinals.Assaf Rinot - 2014 - Bulletin of Symbolic Logic 20 (3):293-314,.
    The history of productivity of the κ-chain condition in partial orders, topological spaces, or Boolean algebras is surveyed, and its connection to the set-theoretic notion of a weakly compact cardinal is highlighted. Then, it is proved that for every regular cardinal κ > א1, the principle □ is equivalent to the existence of a certain strong coloring c : [κ]2 → κ for which the family of fibers T is a nonspecial κ-Aronszajn tree. The theorem follows from an analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Squares and covering matrices.Chris Lambie-Hanson - 2014 - Annals of Pure and Applied Logic 165 (2):673-694.
    Viale introduced covering matrices in his proof that SCH follows from PFA. In the course of the proof and subsequent work with Sharon, he isolated two reflection principles, CP and S, which, under certain circumstances, are satisfied by all covering matrices of a certain shape. Using square sequences, we construct covering matrices for which CP and S fail. This leads naturally to an investigation of square principles intermediate between □κ and □ for a regular cardinal κ. We provide a detailed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations