Switch to: References

Add citations

You must login to add citations.
  1. A microscopic approach to Souslin-tree construction, Part II.Ari Meir Brodsky & Assaf Rinot - 2021 - Annals of Pure and Applied Logic 172 (5):102904.
    In Part I of this series, we presented the microscopic approach to Souslin-tree constructions, and argued that all known ⋄-based constructions of Souslin trees with various additional properties may be rendered as applications of our approach. In this paper, we show that constructions following the same approach may be carried out even in the absence of ⋄. In particular, we obtain a new weak sufficient condition for the existence of Souslin trees at the level of a strongly inaccessible cardinal. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Square below a non-weakly compact cardinal.Hazel Brickhill - 2020 - Archive for Mathematical Logic 59 (3-4):409-426.
    In his seminal paper introducing the fine structure of L, Jensen proved that under \ any regular cardinal that reflects stationary sets is weakly compact. In this paper we give a new proof of Jensen’s result that is straight-forward and accessible to those without a knowledge of Jensen’s fine structure theory. The proof here instead uses hyperfine structure, a very natural and simpler alternative to fine structure theory introduced by Friedman and Koepke.
    Download  
     
    Export citation  
     
    Bookmark  
  • More Notions of Forcing Add a Souslin Tree.Ari Meir Brodsky & Assaf Rinot - 2019 - Notre Dame Journal of Formal Logic 60 (3):437-455.
    An ℵ1-Souslin tree is a complicated combinatorial object whose existence cannot be decided on the grounds of ZFC alone. But fifteen years after Tennenbaum and Jech independently devised notions of forcing for introducing such a tree, Shelah proved that already the simplest forcing notion—Cohen forcing—adds an ℵ1-Souslin tree. In this article, we identify a rather large class of notions of forcing that, assuming a GCH-type hypothesis, add a λ+-Souslin tree. This class includes Prikry, Magidor, and Radin forcing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Adding a Nonreflecting Weakly Compact Set.Brent Cody - 2019 - Notre Dame Journal of Formal Logic 60 (3):503-521.
    For n<ω, we say that theΠn1-reflection principle holds at κ and write Refln if and only if κ is a Πn1-indescribable cardinal and every Πn1-indescribable subset of κ has a Πn1-indescribable proper initial segment. The Πn1-reflection principle Refln generalizes a certain stationary reflection principle and implies that κ is Πn1-indescribable of order ω. We define a forcing which shows that the converse of this implication can be false in the case n=1; that is, we show that κ being Π11-indescribable of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mice with finitely many Woodin cardinals from optimal determinacy hypotheses.Sandra Müller, Ralf Schindler & W. Hugh Woodin - 2020 - Journal of Mathematical Logic 20 (Supp01):1950013.
    We prove the following result which is due to the third author. Let [Formula: see text]. If [Formula: see text] determinacy and [Formula: see text] determinacy both hold true and there is no [Formula: see text]-definable [Formula: see text]-sequence of pairwise distinct reals, then [Formula: see text] exists and is [Formula: see text]-iterable. The proof yields that [Formula: see text] determinacy implies that [Formula: see text] exists and is [Formula: see text]-iterable for all reals [Formula: see text]. A consequence is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Eightfold Way.James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot & Dima Sinapova - 2018 - Journal of Symbolic Logic 83 (1):349-371.
    Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hierarchies of resurrection axioms.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):283-325.
    I analyze the hierarchies of the bounded resurrection axioms and their “virtual” versions, the virtual bounded resurrection axioms, for several classes of forcings. I analyze these axioms in terms of implications and consistency strengths. For the virtual hierarchies, I provide level-by-level equiconsistencies with an appropriate hierarchy of virtual partially super-extendible cardinals. I show that the boldface resurrection axioms for subcomplete or countably closed forcing imply the failure of Todorčević’s square at the appropriate level. I also establish connections between these hierarchies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stationary sets added when forcing squares.Maxwell Levine - 2018 - Archive for Mathematical Logic 57 (7-8):909-916.
    Current research in set theory raises the possibility that \ can be made compatible with some stationary reflection, depending on the parameter \. The purpose of this paper is to demonstrate the difficulty in such results. We prove that the poset \\), which adds a \-sequence by initial segments, will also add non-reflecting stationary sets concentrating in any given cofinality below \. We also investigate the CMB poset, which adds \ in a slightly different way. We prove that the CMB (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dominical categories: recursion theory without elements.Robert A. di Paola & Alex Heller - 1987 - Journal of Symbolic Logic 52 (3):594-635.
    Dominical categories are categories in which the notions of partial morphisms and their domains become explicit, with the latter being endomorphisms rather than subobjects of their sources. These categories form the basis for a novel abstract formulation of recursion theory, to which the present paper is devoted. The abstractness has of course its usual concomitant advantage of generality: it is interesting to see that many of the fundamental results of recursion theory remain valid in contexts far removed from their classic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Woodin's axiom , bounded forcing axioms, and precipitous ideals on ω 1.Benjamin Claverie & Ralf Schindler - 2012 - Journal of Symbolic Logic 77 (2):475-498.
    If the Bounded Proper Forcing Axiom BPFA holds, then Mouse Reflection holds at N₂ with respect to all mouse operators up to the level of Woodin cardinals in the next ZFC-model. This yields that if Woodin's ℙ max axiom (*) holds, then BPFA implies that V is closed under the "Woodin-in-the-next-ZFC-model" operator. We also discuss stronger Mouse Reflection principles which we show to follow from strengthenings of BPFA, and we discuss the theory BPFA plus "NS ω1 is precipitous" and strengthenings (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Nonstandard models in recursion theory and reverse mathematics.C. T. Chong, Wei Li & Yue Yang - 2014 - Bulletin of Symbolic Logic 20 (2):170-200.
    We give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • First-order modal logic in the necessary framework of objects.Peter Fritz - 2016 - Canadian Journal of Philosophy 46 (4-5):584-609.
    I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fragments of frege’s grundgesetze and gödel’s constructible universe.Sean Walsh - 2016 - Journal of Symbolic Logic 81 (2):605-628.
    Frege's Grundgesetze was one of the 19th century forerunners to contemporary set theory which was plagued by the Russell paradox. In recent years, it has been shown that subsystems of the Grundgesetze formed by restricting the comprehension schema are consistent. One aim of this paper is to ascertain how much set theory can be developed within these consistent fragments of the Grundgesetze, and our main theorem shows that there is a model of a fragment of the Grundgesetze which defines a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)We prove covering theorems for K, where K is the core model below the sharp for a strong cardinal, and give an application to stationary set reflection.David Asperó, John Krueger & Yasuo Yoshinobu - 2010 - Annals of Pure and Applied Logic 161 (1):94-108.
    We present several forcing posets for adding a non-reflecting stationary subset of Pω1, where λ≥ω2. We prove that PFA is consistent with dense non-reflection in Pω1, which means that every stationary subset of Pω1 contains a stationary subset which does not reflect to any set of size 1. If λ is singular with countable cofinality, then dense non-reflection in Pω1 follows from the existence of squares.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Strong coding.Sy D. Friedman - 1987 - Annals of Pure and Applied Logic 35 (C):1-98.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is there a set of reals not in K(R)?Daniel W. Cunningham - 1998 - Annals of Pure and Applied Logic 92 (2):161-210.
    We show, using the fine structure of K, that the theory ZF + AD + X R[X K] implies the existence of an inner model of ZF + AD + DC containing a measurable cardinal above its Θ, the supremum of the ordinals which are the surjective image of R. As a corollary, we show that HODK = K for some P K where K is the Dodd-Jensen Core Model relative to P. In conclusion, we show that the theory ZF (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The strength of Mac Lane set theory.A. R. D. Mathias - 2001 - Annals of Pure and Applied Logic 110 (1-3):107-234.
    Saunders Mac Lane has drawn attention many times, particularly in his book Mathematics: Form and Function, to the system of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, , of Transitive Containment, we shall refer as . His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasises, one that is (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Cardinal transfer properties in extender models.Ernest Schimmerling & Martin Zeman - 2008 - Annals of Pure and Applied Logic 154 (3):163-190.
    We prove that if image is a Jensen extender model, then image satisfies the Gap-1 morass principle. As a corollary to this and a theorem of Jensen, the model image satisfies the Gap-2 Cardinal Transfer Property → for all infinite cardinals κ and λ.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Global square sequences in extender models.Martin Zeman - 2010 - Annals of Pure and Applied Logic 161 (7):956-985.
    We present a construction of a global square sequence in extender models with λ-indexing.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stationary Cardinals.Wenzhi Sun - 1993 - Archive for Mathematical Logic 32 (6):429-442.
    This paper will define a new cardinal called aStationary Cardinal. We will show that every weakly∏ 1 1 -indescribable cardinal is a stationary cardinal, every stationary cardinal is a greatly Mahlo cardinal and every stationary set of a stationary cardinal reflects. On the other hand, the existence of such a cardinal is independent of that of a∏ 1 1 -indescribable cardinal and the existence of a cardinal such that every stationary set reflects is also independent of that of a stationary (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • More on full reflection below $${\aleph_\omega}$$.James Cummings & Dorshka Wylie - 2010 - Archive for Mathematical Logic 49 (6):659-671.
    Jech and Shelah in J Symb Log, 55, 822–830 (1990) studied full reflection below ${\aleph_\omega}$ , and produced a model in which the extent of full reflection is maximal in a certain sense. We produce a model in which full reflection is maximised in a different direction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finding generic filters by playing games.Heike Mildenberger - 2010 - Archive for Mathematical Logic 49 (1):91-118.
    We give some restrictions for the search for a model of the club principle with no Souslin trees. We show that ${\diamondsuit(2^\omega, [\omega]^\omega}$ , is almost constant on) together with CH and “all Aronszajn trees are special” is consistent relative to ZFC. This implies the analogous result for a double weakening of the club principle.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model theory of the regularity and reflection schemes.Ali Enayat & Shahram Mohsenipour - 2008 - Archive for Mathematical Logic 47 (5):447-464.
    This paper develops the model theory of ordered structures that satisfy Keisler’s regularity scheme and its strengthening REF ${(\mathcal{L})}$ (the reflection scheme) which is an analogue of the reflection principle of Zermelo-Fraenkel set theory. Here ${\mathcal{L}}$ is a language with a distinguished linear order <, and REF ${(\mathcal {L})}$ consists of formulas of the form $$\exists x \forall y_{1} < x \ldots \forall y_{n} < x \varphi (y_{1},\ldots ,y_{n})\leftrightarrow \varphi^{ < x}(y_1, \ldots ,y_n),$$ where φ is an ${\mathcal{L}}$ -formula, φ (...))
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
    Assuming some large cardinals, a model of ZFC is obtained in which $\aleph_{\omega+1}$ carries no Aronszajn trees. It is also shown that if $\lambda$ is a singular limit of strongly compact cardinals, then $\lambda^+$ carries no Aronszajn trees.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Librationist Closures of the Paradoxes.Frode Bjørdal - 2012 - Logic and Logical Philosophy 21 (4):323-361.
    We present a semi-formal foundational theory of sorts, akin to sets, named librationism because of its way of dealing with paradoxes. Its semantics is related to Herzberger’s semi inductive approach, it is negation complete and free variables (noemata) name sorts. Librationism deals with paradoxes in a novel way related to paraconsistent dialetheic approaches, but we think of it as bialethic and parasistent. Classical logical theorems are retained, and none contradicted. Novel inferential principles make recourse to theoremhood and failure of theoremhood. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Global square and mutual stationarity at the ℵn.Peter Koepke & Philip D. Welch - 2011 - Annals of Pure and Applied Logic 162 (10):787-806.
    We give the proof of a theorem of Jensen and Zeman on the existence of a global □ sequence in the Core Model below a measurable cardinal κ of Mitchell order ) equal to κ++, and use it to prove the following theorem on mutual stationarity at n.Let ω1 denote the first uncountable cardinal of V and set to be the class of ordinals of cofinality ω1.TheoremIf every sequence n m. In particular, there is such a model in which for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scales of minimal complexity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb{R})}$$\end{document}. [REVIEW]Daniel W. Cunningham - 2012 - Archive for Mathematical Logic 51 (3-4):319-351.
    Using a Levy hierarchy and a fine structure theory for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K(\mathbb{R})}$$\end{document}, we obtain scales of minimal complexity in this inner model. Each such scale is obtained assuming the determinacy of only those sets of reals whose complexity is strictly below that of the scale constructed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A characterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} in extender models. [REVIEW]Kyriakos Kypriotakis & Martin Zeman - 2013 - Archive for Mathematical Logic 52 (1-2):67-90.
    We prove that, in any fine structural extender model with Jensen’s λ-indexing, there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} -sequence if and only if there is a pair of stationary subsets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa^{+} \cap {\rm {cof}}( < \kappa)}$$\end{document} without common reflection point of cofinality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ < \kappa}$$\end{document} which, in turn, is equivalent to the existence of a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Descriptive inner model theory.Grigor Sargsyan - 2013 - Bulletin of Symbolic Logic 19 (1):1-55.
    The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture. One particular motivation for resolving MSC is that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Hyperfine Structure Theory and Gap 1 Morasses.Sy-David Friedman, Peter Koepke & Boris Piwinger - 2006 - Journal of Symbolic Logic 71 (2):480 - 490.
    Using the Friedman-Koepke Hyperfine Structure Theory of [2], we provide a short construction of a gap 1 morass in the constructible universe.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Club guessing sequences and filters.Tetsuya Ishiu - 2005 - Journal of Symbolic Logic 70 (4):1037-1071.
    We investigate club guessing sequences and filters. We prove that assuming V=L, there exists a strong club guessing sequence on μ if and only if μ is not ineffable for every uncountable regular cardinal μ. We also prove that for every uncountable regular cardinal μ, relative to the existence of a Woodin cardinal above μ, it is consistent that every tail club guessing ideal on μ is precipitous.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gödel and set theory.Akihiro Kanamori - 2007 - Bulletin of Symbolic Logic 13 (2):153-188.
    Kurt Gödel with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice and the Continuum Hypothesis. More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Recent advances in ordinal analysis: Π 21-CA and related systems.Michael Rathjen - 1995 - Bulletin of Symbolic Logic 1 (4):468 - 485.
    §1. Introduction. The purpose of this paper is, in general, to report the state of the art of ordinal analysis and, in particular, the recent success in obtaining an ordinal analysis for the system of -analysis, which is the subsystem of formal second order arithmetic, Z2, with comprehension confined to -formulae. The same techniques can be used to provide ordinal analyses for theories that are reducible to iterated -comprehension, e.g., -comprehension. The details will be laid out in [28].Ordinal-theoretic proof theory (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Similar but not the same: Various versions of ♣ do not coincide.Mirna Džamonja & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (1):180 - 198.
    We consider various versions of the ♣ principle. This principle is a known consequence of $\lozenge$ . It is well known that $\lozenge$ is not sensitive to minor changes in its definition, e.g., changing the guessing requirement form "guessing exactly" to "guessing modulo a finite set". We show however, that this is not true for ♣. We consider some other variants of ♣ as well.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Organic and tight.J. Cummings, M. Foreman & E. Schimmerling - 2009 - Annals of Pure and Applied Logic 160 (1):22-32.
    We define organic sets and organically stationary sequences, which generalize tight sets and tightly stationary sequences respectively. We show that there are stationary many inorganic sets and stationary many sets that are organic but not tight. Working in the Constructible Universe, we give a characterization of organic and tight sets in terms of fine structure. We answer a related question posed in [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: Part two, Ann. Pure Appl. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Sets constructible from sequences of ultrafilters.William J. Mitchell - 1974 - Journal of Symbolic Logic 39 (1):57-66.
    In [4], Kunen used iterated ultrapowers to show that ifUis a normalκ-complete nontrivial ultrafilter on a cardinalκthenL[U], the class of sets constructive fromU, has only the ultrafilterU∩L[U] and this ultrafilter depends only onκ. In this paper we extend Kunen's methods to arbitrary sequencesUof ultrafilters and obtain generalizations of these results. In particular we answer Problem 1 of Kunen and Paris [5] which asks whether the number of ultrafilters onκcan be intermediate between 1 and 22κ. If there is a normalκ-complete ultrafilterUonκsuch (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Saturated ideals.Kenneth Kunen - 1978 - Journal of Symbolic Logic 43 (1):65-76.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Morasses and the lévy-collapse.P. Komjáth - 1987 - Journal of Symbolic Logic 52 (1):111-115.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Turing computations on ordinals.Peter Koepke - 2005 - Bulletin of Symbolic Logic 11 (3):377-397.
    We define the notion of ordinal computability by generalizing standard Turing computability on tapes of length ω to computations on tapes of arbitrary ordinal length. We show that a set of ordinals is ordinal computable from a finite set of ordinal parameters if and only if it is an element of Gödel's constructible universe L. This characterization can be used to prove the generalized continuum hypothesis in L.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On regular reduced products.Juliette Kennedy & Saharon Shelah - 2002 - Journal of Symbolic Logic 67 (3):1169-1177.
    Assume $\langle \aleph_0, \aleph_1 \rangle \rightarrow \langle \lambda, \lambda^+ \rangle$ . Assume M is a model of a first order theory T of cardinality at most λ+ in a language L(T) of cardinality $\leq \lambda$ . Let N be a model with the same language. Let Δ be a set of first order formulas in L(T) and let D be a regular filter on λ. Then M is $\Delta-embeddable$ into the reduced power $N^\lambda/D$ , provided that every $\Delta-existential$ formula true (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Singular cardinals and the pcf theory.Thomas Jech - 1995 - Bulletin of Symbolic Logic 1 (4):408-424.
    §1. Introduction. Among the most remarkable discoveries in set theory in the last quarter century is the rich structure of the arithmetic of singular cardinals, and its deep relationship to large cardinals. The problem of finding a complete set of rules describing the behavior of the continuum function 2ℵα for singular ℵα's, known as the Singular Cardinals Problem, has been attacked by many different techniques, involving forcing, large cardinals, inner models, and various combinatorial methods. The work on the singular cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finite level borel games and a problem concerning the jump hierarchy.Harold T. Hodes - 1984 - Journal of Symbolic Logic 49 (4):1301-1318.
    Download  
     
    Export citation  
     
    Bookmark  
  • The prospects for mathematical logic in the twenty-first century.Samuel R. Buss, Alexander S. Kechris, Anand Pillay & Richard A. Shore - 2001 - Bulletin of Symbolic Logic 7 (2):169-196.
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Forcing closed unbounded sets.Uri Abraham & Saharon Shelah - 1983 - Journal of Symbolic Logic 48 (3):643-657.
    We discuss the problem of finding forcing posets which introduce closed unbounded subsets to a given stationary set.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The comparison lemma.John R. Steel - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing a □(κ)-like principle to hold at a weakly compact cardinal.Brent Cody, Victoria Gitman & Chris Lambie-Hanson - 2021 - Annals of Pure and Applied Logic 172 (7):102960.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Stably measurable cardinals.Philip D. Welch - 2021 - Journal of Symbolic Logic 86 (2):448-470.
    We define a weak iterability notion that is sufficient for a number of arguments concerning $\Sigma _{1}$ -definability at uncountable regular cardinals. In particular we give its exact consistency strength first in terms of the second uniform indiscernible for bounded subsets of $\kappa $ : $u_2$, and secondly to give the consistency strength of a property of Lücke’s.TheoremThe following are equiconsistent:There exists $\kappa $ which is stably measurable;for some cardinal $\kappa $, $u_2=\sigma $ ;The $\boldsymbol {\Sigma }_{1}$ -club property holds (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.
    Motivated by the goal of constructing a model in which there are no κ-Aronszajn trees for any regular $k>\aleph_1$, we produce a model with many singular cardinals where both the singular cardinals hypothesis and weak square fail.
    Download  
     
    Export citation  
     
    Bookmark   1 citation