Switch to: Citations

References in:

Dynamic measure logic

Annals of Pure and Applied Logic 163 (12):1719-1737 (2012)

Add references

You must login to add references.
  1. Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Completeness of S4 for the Lebesgue Measure Algebra.Tamar Lando - 2012 - Journal of Philosophical Logic 41 (2):287-316.
    We prove completeness of the propositional modal logic S 4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, and . Propositional modal formulae are assigned to Lebesgue-measurable subsets of the real interval [0, 1], modulo sets of measure zero. Equivalence classes of Lebesgue-measurable subsets form a measure algebra, , and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Completeness of S4 with respect to the real line: revisited.Gurman Bezhanishvili & Mai Gehrke - 2005 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)Absolute Completeness of S4u for Its Measure-Theoretic Semantics.David Fernández-Duque - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 100-119.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dynamic topological logic.Philip Kremer & Giorgi Mints - 2005 - Annals of Pure and Applied Logic 131 (1-3):133-158.
    Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A proof of topological completeness for S4 in.Grigori Mints & Ting Zhang - 2005 - Annals of Pure and Applied Logic 133 (1-3):231-245.
    The completeness of the modal logic S4 for all topological spaces as well as for the real line , the n-dimensional Euclidean space and the segment etc. was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with a further simplification. The proof strategy is to embed a finite rooted Kripke structure for S4 into a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Proof Of Topological Completeness For S4 In.Giorgi Mints & Ting Zhang - 2005 - Annals of Pure and Applied Logic 133 (1-3):231-245.
    The completeness of the modal logic S4 for all topological spaces as well as for the real line, the n-dimensional Euclidean space and the segment etc. was proved by McKinsey and Tarski in 1944. Several simplified proofs contain gaps. A new proof presented here combines the ideas published later by G. Mints and M. Aiello, J. van Benthem, G. Bezhanishvili with a further simplification. The proof strategy is to embed a finite rooted Kripke structure for S4 into a subspace of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Dynamic topological logic.Philip Kremer & Grigori Mints - 2005 - Annals of Pure and Applied Logic 131 (1-3):133-158.
    Dynamic topological logic provides a context for studying the confluence of the topological semantics for S4, topological dynamics, and temporal logic. The topological semantics for S4 is based on topological spaces rather than Kripke frames. In this semantics, □ is interpreted as topological interior. Thus S4 can be understood as the logic of topological spaces, and □ can be understood as a topological modality. Topological dynamics studies the asymptotic properties of continuous maps on topological spaces. Let a dynamic topological system (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Dynamic Topological Completeness for.David Fernandez Duque - 2007 - Logic Journal of the IGPL 15 (1):77-107.
    Dynamic topological logic combines topological and temporal modalities to express asymptotic properties of dynamic systems on topological spaces. A dynamic topological model is a triple 〈X ,f , V 〉, where X is a topological space, f : X → X a continuous function and V a truth valuation assigning subsets of X to propositional variables. Valid formulas are those that are true in every model, independently of X or f. A natural problem that arises is to identify the logics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations