Switch to: Citations

Add references

You must login to add references.
  1. Probability Theory. The Logic of Science.Edwin T. Jaynes - 2002 - Cambridge University Press: Cambridge. Edited by G. Larry Bretthorst.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • In Defence of Objective Bayesianism.Jon Williamson - 2010 - Oxford University Press.
    Objective Bayesianism is a methodological theory that is currently applied in statistics, philosophy, artificial intelligence, physics and other sciences. This book develops the formal and philosophical foundations of the theory, at a level accessible to a graduate student with some familiarity with mathematical notation.
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Judea Pearl - 1988 - Morgan Kaufmann.
    The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
    Download  
     
    Export citation  
     
    Bookmark   418 citations  
  • Characterizing the principle of minimum cross-entropy within a conditional-logical framework.Gabriele Kern-Isberner - 1998 - Artificial Intelligence 98 (1-2):169-208.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Bayesian nets and causality.Jon Williamson - manuscript
    How should we reason with causal relationships? Much recent work on this question has been devoted to the theses (i) that Bayesian nets provide a calculus for causal reasoning and (ii) that we can learn causal relationships by the automated learning of Bayesian nets from observational data. The aim of this book is to..
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • In defense of the maximum entropy inference process.J. Paris & A. Vencovská - 1997 - International Journal of Approximate Reasoning 17 (1):77-103.
    This paper is a sequel to an earlier result of the authors that in making inferences from certain probabilistic knowledge bases the maximum entropy inference process, ME, is the only inference process respecting “common sense.” This result was criticized on the grounds that the probabilistic knowledge bases considered are unnatural and that ignorance of dependence should not be identified with statistical independence. We argue against these criticisms and also against the more general criticism that ME is representation dependent. In a (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Uncertain Reasoner’s Companion. [REVIEW]J. B. Paris - 1997 - Erkenntnis 46 (3):397-400.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Objective bayesian nets.Jon Williamson - manuscript
    I present a formalism that combines two methodologies: objective Bayesianism and Bayesian nets. According to objective Bayesianism, an agent’s degrees of belief (i) ought to satisfy the axioms of probability, (ii) ought to satisfy constraints imposed by background knowledge, and (iii) should otherwise be as non-committal as possible (i.e. have maximum entropy). Bayesian nets offer an efficient way of representing and updating probability functions. An objective Bayesian net is a Bayesian net representation of the maximum entropy probability function.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Combining probabilistic logic programming with the power of maximum entropy.Gabriele Kern-Isberner & Thomas Lukasiewicz - 2004 - Artificial Intelligence 157 (1-2):139-202.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Maximising entropy efficiently.Jon Williamson - 2002
    Recommended citation: . . Link¨ oping Electronic Articles in Computer and Information Science, Vol. 7(2002): nr 0. http://www.ep.liu.se/ea/cis/2002/00/. September 18, 2002. </div><div class="options"><a href="https://philarchive.org/archive/WILMEE"><i class="fa fa-download"></i> Download</a>   <div id="la-WILMEE" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('WILMEE')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-WILMEE" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('WILMEE','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/WILMEE"><i class="fa fa-share-alt"></i> 3 citations</a>   <span class="eMsg" id="msg-WILMEE"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-LANOBN"> <td> <li id='eLANOBN' onclick="ee('click','LANOBN')" onmouseover="ee('over','LANOBN')" onmouseout="ee('out','LANOBN')" class='entry'><span class="citation"><a href="/rec/LANOBN"><span class='articleTitle recTitle'>Objective Bayesian Nets from Consistent Datasets.</span></a><a class='discreet' title="View other works by Jürgen Landes" href="/s/Jürgen%20Landes"><span class='name'>Jürgen Landes</span></a> & <a class='discreet' title="View other works by Jon Williamson" href="/s/Jon%20Williamson"><span class='name'>Jon Williamson</span></a> - <span class="pubYear">unknown</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="abstract">This paper addresses the problem of finding a Bayesian net representation of the probability function that agrees with the distributions of multiple consistent datasets and otherwise has maximum entropy. We give a general algorithm which is significantly more efficient than the standard brute-force approach. Furthermore, we show that in a wide range of cases such a Bayesian net can be obtained without solving any optimisation problem. </div><div class="options"><a href="https://philarchive.org/archive/LANOBN"><i class="fa fa-download"></i> Download</a>   <div id="la-LANOBN" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('LANOBN')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-LANOBN" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('LANOBN','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/LANOBN"><i class="fa fa-share-alt"></i> 5 citations</a>   <span class="eMsg" id="msg-LANOBN"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-LANOBA"> <td> <li id='eLANOBA' onclick="ee('click','LANOBA')" onmouseover="ee('over','LANOBA')" onmouseout="ee('out','LANOBA')" class='entry'><span class="citation"><a href="/rec/LANOBA"><span class='articleTitle recTitle'>Objective Bayesianism and the maximum entropy principle.</span></a><a class='discreet' title="View other works by Jürgen Landes" href="/s/Jürgen%20Landes"><span class='name'>Jürgen Landes</span></a> & <a class='discreet' title="View other works by Jon Williamson" href="/s/Jon%20Williamson"><span class='name'>Jon Williamson</span></a> - <span class="pubYear">2013</span> - <span class='pubInfo'> <i class='pubName'>Entropy</i> 15 (9):3528-3591.</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="abstract">Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities, they should be calibrated to our evidence of physical probabilities, and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism<span id="LANOBA-absexp"> (<span class="ll" onclick='$("LANOBA-abstract2").show();$("LANOBA-absexp").hide()'>...</span>)</span><span id="LANOBA-abstract2" style="display:none"> are usually justified in different ways. In this paper we show that the three norms can all be subsumed under a single justification in terms of minimising worst-case expected loss. This, in turn, is equivalent to maximising a generalised notion of entropy. We suggest that requiring language invariance, in addition to minimising worst-case expected loss, motivates maximisation of standard entropy as opposed to maximisation of other instances of generalised entropy. Our argument also provides a qualified justification for updating degrees of belief by Bayesian conditionalisation. However, conditional probabilities play a less central part in the objective Bayesian account than they do under the subjective view of Bayesianism, leading to a reduced role for Bayes’ Theorem. (<span class="ll" onclick='$("LANOBA-abstract2").hide();$("LANOBA-absexp").show();'>shrink</span>)</span></div><div class="options"><a href="https://philarchive.org/archive/LANOBA"><i class="fa fa-download"></i> Download</a>   <div id="la-LANOBA" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('LANOBA')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-LANOBA" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('LANOBA','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/LANOBA"><i class="fa fa-share-alt"></i> 18 citations</a>   <span class="eMsg" id="msg-LANOBA"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-DANLTC-2"> <td> <li id='eDANLTC-2' onclick="ee('click','DANLTC-2')" onmouseover="ee('over','DANLTC-2')" onmouseout="ee('out','DANLTC-2')" class='entry'><span class="citation"><a href="/rec/DANLTC-2"><span class='articleTitle recTitle'>Learning the Causal Structure of Overlapping Variable Sets.</span></a><a class='discreet' title="View other works by David Danks" href="/s/David%20Danks"><span class='name'>David Danks</span></a> - <span class="pubYear">unknown</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="options"><a href="https://philarchive.org/archive/DANLTC-2"><i class="fa fa-download"></i> Download</a>   <div id="la-DANLTC-2" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('DANLTC-2')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-DANLTC-2" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('DANLTC-2','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/DANLTC-2"><i class="fa fa-share-alt"></i> 7 citations</a>   <span class="eMsg" id="msg-DANLTC-2"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-LANJOB"> <td> <li id='eLANJOB' onclick="ee('click','LANJOB')" onmouseover="ee('over','LANJOB')" onmouseout="ee('out','LANJOB')" class='entry'><span class="citation"><a href="/rec/LANJOB"><span class='articleTitle recTitle'>Justifying Objective Bayesianism on Predicate Languages.</span></a><a class='discreet' title="View other works by Jürgen Landes" href="/s/Jürgen%20Landes"><span class='name'>Jürgen Landes</span></a> & <a class='discreet' title="View other works by Jon Williamson" href="/s/Jon%20Williamson"><span class='name'>Jon Williamson</span></a> - <span class="pubYear">2015</span> - <span class='pubInfo'> <i class='pubName'>Entropy</i> 17 (4):2459-2543.</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="abstract">Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian norms in the case in which the background language is a first-order predicate language, with a view to applying the resulting formalism<span id="LANJOB-absexp"> (<span class="ll" onclick='$("LANJOB-abstract2").show();$("LANJOB-absexp").hide()'>...</span>)</span><span id="LANJOB-abstract2" style="display:none"> to inductive logic. We show that the maximum entropy principle can be motivated largely in terms of minimising worst-case expected loss. (<span class="ll" onclick='$("LANJOB-abstract2").hide();$("LANJOB-absexp").show();'>shrink</span>)</span></div><div class="options"><a href="https://philarchive.org/archive/LANJOB"><i class="fa fa-download"></i> Download</a>   <div id="la-LANJOB" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('LANJOB')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-LANJOB" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('LANJOB','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/LANJOB"><i class="fa fa-share-alt"></i> 9 citations</a>   <span class="eMsg" id="msg-LANJOB"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-NAGOBN"> <td> <li id='eNAGOBN' onclick="ee('click','NAGOBN')" onmouseover="ee('over','NAGOBN')" onmouseout="ee('out','NAGOBN')" class='entry'><span class="citation"><a href="/rec/NAGOBN"><span class='articleTitle recTitle'>Objective Bayesian Nets for Systems Modelling and Prognosis in Breast Cancer.</span></a><a class='discreet' title="View other works by Sylvia Nagl" href="/s/Sylvia%20Nagl"><span class='name'>Sylvia Nagl</span></a> - <span class="pubYear">unknown</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="abstract">Cancer treatment decisions should be based on all available evidence. But this evidence is complex and varied: it includes not only the patient’s symptoms and expert knowledge of the relevant causal processes, but also clinical databases relating to past patients, databases of observations made at the molecular level, and evidence encapsulated in scientific papers and medical informatics systems. Objective Bayesian nets offer a principled path to knowledge integration, and we show in this chapter how they can be applied to integrate<span id="NAGOBN-absexp"> (<span class="ll" onclick='$("NAGOBN-abstract2").show();$("NAGOBN-absexp").hide()'>...</span>)</span><span id="NAGOBN-abstract2" style="display:none"> various kinds of evidence in the cancer domain. This is important from the systems biology perspective, which needs to integrate data that concern different levels of analysis, and is also important from the point of view of medical informatics. (<span class="ll" onclick='$("NAGOBN-abstract2").hide();$("NAGOBN-absexp").show();'>shrink</span>)</span></div><div class="options"><a href="https://philarchive.org/archive/NAGOBN"><i class="fa fa-download"></i> Download</a>   <div id="la-NAGOBN" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('NAGOBN')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-NAGOBN" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('NAGOBN','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/NAGOBN"><i class="fa fa-share-alt"></i> 3 citations</a>   <span class="eMsg" id="msg-NAGOBN"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-ADAOTA-4"> <td> <li id='eADAOTA-4' onclick="ee('click','ADAOTA-4')" onmouseover="ee('over','ADAOTA-4')" onmouseout="ee('out','ADAOTA-4')" class='entry'><span class="citation"><a href="/rec/ADAOTA-4"><span class='articleTitle recTitle'>On the applicability of the ‘number of possible states’ argument in multi-expert reasoning.</span></a><a class='discreet' title="View other works by Martin Adamčík" href="/s/Martin%20Adamčík"><span class='name'>Martin Adamčík</span></a> - <span class="pubYear">2016</span> - <span class='pubInfo'> <i class='pubName'>Journal of Applied Logic</i> 19:20-49.</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="options"><a href="https://philarchive.org/archive/ADAOTA-4"><i class="fa fa-download"></i> Download</a>   <div id="la-ADAOTA-4" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('ADAOTA-4')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-ADAOTA-4" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('ADAOTA-4','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/ADAOTA-4"><i class="fa fa-share-alt"></i> 2 citations</a>   <span class="eMsg" id="msg-ADAOTA-4"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-CATTAI"> <td> <li id='eCATTAI' onclick="ee('click','CATTAI')" onmouseover="ee('over','CATTAI')" onmouseout="ee('out','CATTAI')" class='entry'><span class="citation"><a href="/rec/CATTAI"><span class='articleTitle recTitle'>Towards an Informational Pragmatic Realism.</span></a><a class='discreet' title="View other works by Ariel Caticha" href="/s/Ariel%20Caticha"><span class='name'>Ariel Caticha</span></a> - <span class="pubYear">2014</span> - <span class='pubInfo'> <i class='pubName'>Minds and Machines</i> 24 (1):37-70.</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="abstract">I discuss the design of the method of entropic inference as a general framework for reasoning under conditions of uncertainty. The main contribution of this discussion is to emphasize the pragmatic elements in the derivation. More specifically: (1) Probability theory is designed as the uniquely natural tool for representing states of incomplete information. (2) An epistemic notion of information is defined in terms of its relation to the Bayesian beliefs of ideally rational agents. (3) The method of updating from a<span id="CATTAI-absexp"> (<span class="ll" onclick='$("CATTAI-abstract2").show();$("CATTAI-absexp").hide()'>...</span>)</span><span id="CATTAI-abstract2" style="display:none"> prior to a posterior probability distribution is designed through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting framework includes as special cases both MaxEnt and Bayes’ rule. It therefore unifies entropic and Bayesian methods into a single general inference scheme. I find that similar pragmatic elements are an integral part of Putnam’s internal realism, of Floridi’s informational structural realism, and also of van Fraasen’s empiricist structuralism. I conclude with the conjecture that their valuable insights can be incorporated into a single coherent doctrine—an informational pragmatic realism. (<span class="ll" onclick='$("CATTAI-abstract2").hide();$("CATTAI-absexp").show();'>shrink</span>)</span></div><div class="options"><a href="https://philarchive.org/archive/CATTAI"><i class="fa fa-download"></i> Download</a>   <div id="la-CATTAI" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('CATTAI')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-CATTAI" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('CATTAI','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/CATTAI"><i class="fa fa-share-alt"></i> 2 citations</a>   <span class="eMsg" id="msg-CATTAI"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-WILMIS-4"> <td> <li id='eWILMIS-4' onclick="ee('click','WILMIS-4')" onmouseover="ee('over','WILMIS-4')" onmouseout="ee('out','WILMIS-4')" class='entry'><span class="citation"><a href="/rec/WILMIS-4"><span class='articleTitle recTitle'>Models in Systems Medicine.</span></a><a class='discreet' title="View other works by Jon Williamson" href="/s/Jon%20Williamson"><span class='name'>Jon Williamson</span></a> - <span class="pubYear">unknown</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="abstract">Systems medicine is a promising new paradigm for discovering associations, causal relationships and mechanisms in medicine. But it faces some tough challenges that arise from the use of big data: in particular, the problem of how to integrate evidence and the problem of how to structure the development of models. I argue that objective Bayesian models offer one way of tackling the evidence integration problem. I also offer a general methodology for structuring the development of models, within which the objective<span id="WILMIS-4-absexp"> (<span class="ll" onclick='$("WILMIS-4-abstract2").show();$("WILMIS-4-absexp").hide()'>...</span>)</span><span id="WILMIS-4-abstract2" style="display:none"> Bayesian approach fits rather naturally. (<span class="ll" onclick='$("WILMIS-4-abstract2").hide();$("WILMIS-4-absexp").show();'>shrink</span>)</span></div><div class="options"><a href="https://philarchive.org/archive/WILMIS-4"><i class="fa fa-download"></i> Download</a>   <div id="la-WILMIS-4" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('WILMIS-4')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-WILMIS-4" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('WILMIS-4','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/WILMIS-4"><i class="fa fa-share-alt"></i> 1 citation</a>   <span class="eMsg" id="msg-WILMIS-4"></span></div></div></li> </td> <td> </td> </tr> <tr id="LANOBN-2-SREMLB"> <td> <li id='eSREMLB' onclick="ee('click','SREMLB')" onmouseover="ee('over','SREMLB')" onmouseout="ee('out','SREMLB')" class='entry'><span class="citation"><a href="/rec/SREMLB"><span class='articleTitle recTitle'>Maximum likelihood bounded tree-width Markov networks.</span></a><a class='discreet' title="View other works by Nathan Srebro" href="/s/Nathan%20Srebro"><span class='name'>Nathan Srebro</span></a> - <span class="pubYear">2003</span> - <span class='pubInfo'> <i class='pubName'>Artificial Intelligence</i> 143 (1):123-138.</span></span><span class='toggle' style='display:none' data-target='extras'>details</span><div class="extras"><div class="options"><a href="https://philarchive.org/archive/SREMLB"><i class="fa fa-download"></i> Download</a>   <div id="la-SREMLB" title="Export to another format" class="yui-skin-sam ldiv"> </div><span class="ll" onclick="showExports('SREMLB')"><i class="fa fa-external-link"></i> Export citation<img src="/assets/raw/subind.gif"></span>   <div id="ml-SREMLB" class="yui-skin-sam ldiv"> </div><span title="Bookmark this publication" class="ll" onclick="showLists('SREMLB','')"><i class="fa fa-bookmark"></i> Bookmark<img src="/assets/raw/subind.gif"></span>  <a href="/citations/SREMLB"><i class="fa fa-share-alt"></i> 1 citation</a>   <span class="eMsg" id="msg-SREMLB"></span></div></div></li> </td> <td> </td> </tr> </table> <div class='flex' style="justify-content: center"> <ul class="pagination"> <li class="active"><a class="is-current pagination-link" href="?freeOnly=&sqc=off&url=&page_size=50&direction=references&hideAbstracts=off&proOnly=off&newWindow=off&onlineOnly=&showCategories=off&filterByAreas=off&langFilter=off&publishedOnly=off&eId=LANOBN-2&total=19&offset=0&categorizerOn=off">1</a></li> </ul> </div> <script> function removeCitation(args) { if (confirm('Are you sure you want to remove this reference?')) { ppAct('removeCitation', args, function() { $j('#' + args['fromId'] + '-' + args['toId']).fadeOut(); }); } } </script> <!-- Containers for YUI dialogs, categorizer, 'loading' widget.z-index=999 to put it above all content in #all --> <div class='yui-skin-sam' style='z-index:3000'> <div class="ppskin" id="container"></div> <div id='load_c' style='display:none'> <div id='load_c2'> <div id='loadmsg'>loading ..</div> <img id='loadimg' width="16" height="16" src='/assets/raw/generic-load.gif'> </div> </div> <div id='outer-con' class='ppskin' style='z-index:1000'> <div id='editor-con' style="display:none"> <div class='hd'></div> <div class='bd' id='editor-bd' style=""></div> </div> <div id='categorizer-con' style="display:none"> </div> </div> </div> </div> <!-- end #contentContainer--> <div class='container footer-container panel panel-default panelb-body'> <div id="footerWrap"> <div class="footer centered" style=""> <!-- List of areas --> <div class='hidden-xs'> <div class='centered' style='padding-bottom:5px'><table class='centered'><tr><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/applied-ethics' rel='subsection'>Applied ethics</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/epistemology' rel='subsection'>Epistemology</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/history-of-western-philosophy' rel='subsection'>History of Western Philosophy</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/meta-ethics' rel='subsection'>Meta-ethics</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/metaphysics' rel='subsection'>Metaphysics</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/normative-ethics' rel='subsection'>Normative ethics</a></td></tr><tr><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/philosophy-of-biology' rel='subsection'>Philosophy of biology</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/philosophy-of-language' rel='subsection'>Philosophy of language</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/philosophy-of-mind' rel='subsection'>Philosophy of mind</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/philosophy-of-religion' rel='subsection'>Philosophy of religion</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/browse/science-logic-and-mathematics' rel='subsection'>Science Logic and Mathematics</a></td><td valign='top' width='16%'><a style='font-size:smaller' href='/categories.pl'>More ...</a></td></tr></table></div> </div> <!-- More links --> <div class="btnmenu"> <a rel="subsection" href="https://philarchive.org">Home</a> | <a rel="subsection" href="/categories.pl">Bibliographies</a> | <a rel="subsection" href="/help/about.html">About PhilArchive</a> | <a rel="subsection" href="/help/contact.html">Contact us</a> | <a rel="subsection" href="/help/codeofconduct.html">Code of conduct</a> </div> <br> <a class='sponsorbtm' href="http://cdp.uwo.ca"><img style="height:75px" alt="CDP" border="0" src="/philarchive/raw/CDP-logo.gif"></a> <a class='sponsorbtm' href="http://pdcnet.org"><img alt="Phiosophy Documentation Center" src="/philarchive/raw/pdc.jpg" border="0" style="height:75px"></a> <br> <div> PhilPapers logo by <a href="https://www.behance.net/AndreaAndrews">Andrea Andrews</a> and <a href="https://www.behance.net/MeghanDriscoll">Meghan Driscoll</a>. </div> This site uses cookies and Google Analytics (see our <a rel="nofollow" href="https://philpapers.org/help/terms.html#analytics">terms & conditions</a> for details regarding the privacy implications). <br> <br>Use of this site is subject to <a rel="nofollow" href="https://philpapers.org/help/terms.html">terms & conditions</a>. <br>All rights reserved by <a href="https://philpapers.org/foundation">The PhilPapers Foundation</a><br> <br> <span style="color:#aaa;font-size:smaller">Server: philpapers-web-6f97f49787-r597v uwo</span> <!-- footer --> </div> </div> </div> <!-- closes #all --> </div> <script type="text/javascript" src="/dynamic-assets/webpack/webpack.d70222f0eaecb52db640.js"></script> <script type="text/javascript"> var onload_functions = new Array(); onload_functions[0] = function() { basicOnLoad() }; </script> <script type="text/javascript"> window.onload = function() { // store pre-loaded menus for my biblio etc. for (x=0;x<onload_functions.length;x++) { onload_functions[x](); } const vues = document.querySelectorAll(".philstar-components"); vues.forEach(el => { el.classList.remove('is-hidden'); }); } </script> </body> </html>