Switch to: Citations

Add references

You must login to add references.
  1. Region-based topology.Peter Roeper - 1997 - Journal of Philosophical Logic 26 (3):251-309.
    A topological description of space is given, based on the relation of connection among regions and the property of being limited. A minimal set of 10 constraints is shown to permit definitions of points and of open and closed sets of points and to be characteristic of locally compact T2 spaces. The effect of adding further constraints is investigated, especially those that characterise continua. Finally, the properties of mappings in region-based topology are studied. Not all such mappings correspond to point (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Point, line, and surface, as sets of solids.Theodore de Laguna - 1922 - Journal of Philosophy 19 (17):449-461.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • A Spatial Logic Based on Regions and Connection.David Randell, Cui A., Cohn Zhan & G. Anthony - 1992 - KR 92:165--176.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • (1 other version)Gunk, Topology and Measure.Frank Arntzenius - 2008 - Oxford Studies in Metaphysics 4.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The Structure of Gunk: Adventures in the Ontology of Space.Jeffrey Sanford Russell - 2008 - In Dean Zimmerman (ed.), Oxford Studies in Metaphysics: Volume 4. Oxford University Press UK. pp. 248.
    Could space consist entirely of extended regions, without any regions shaped like points, lines, or surfaces? Peter Forrest and Frank Arntzenius have independently raised a paradox of size for space like this, drawing on a construction of Cantor’s. I present a new version of this argument and explore possible lines of response.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Diodorean modality in Minkowski spacetime.Robert Goldblatt - 1980 - Studia Logica 39 (2-3):219 - 236.
    The Diodorean interpretation of modality reads the operator as it is now and always will be the case that. In this paper time is modelled by the four-dimensional Minkowskian geometry that forms the basis of Einstein's special theory of relativity, with event y coming after event x just in case a signal can be sent from x to y at a speed at most that of the speed of light (so that y is in the causal future of x).It is (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Strong completeness of s4 for any dense-in-itself metric space.Philip Kremer - 2013 - Review of Symbolic Logic 6 (3):545-570.
    In the topological semantics for modal logic, S4 is well-known to be complete for the rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but also strongly complete, for the rational line. But no similarly easy amendment is available for the real line or for Cantor space and the question (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Multimo dal logics of products of topologies.Johan van Benthem, Guram Bezhanishvili, Balder ten Cate & Darko Sarenac - 2006 - Studia Logica 84 (3):369-392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies.We prove that both of these logics are complete for the product of rational numbers ℚ × ℚ with the appropriate topologies.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Completeness of S4 with respect to the real line: revisited.Gurman Bezhanishvili & Mai Gehrke - 2005 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   19 citations