Switch to: Citations

Add references

You must login to add references.
  1. The Nonstationary Ideal in the Pmax Extension.Paul B. Larson - 2007 - Journal of Symbolic Logic 72 (1):138 - 158.
    The forcing construction Pmax, invented by W. Hugh Woodin, produces a model whose collection of subsets of ω₁ is in some sense maximal. In this paper we study the Boolean algebra induced by the nonstationary ideal on ω₁ in this model. Among other things we show that the induced quotient does not have a simply definable form. We also prove several results about saturation properties of the ideal in this extension.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Martin's Maximum and the.Paul Larson - 2000 - Annals of Pure and Applied Logic 106 (1-3):135-149.
    Assuming the existence of a supercompact limit of supercompact cardinals, we modify the original consistency proof of Martin's Maximum to obtain a model in which MM holds but the axiom fails.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Set mapping reflection.Justin Tatch Moore - 2005 - Journal of Mathematical Logic 5 (1):87-97.
    In this note we will discuss a new reflection principle which follows from the Proper Forcing Axiom. The immediate purpose will be to prove that the bounded form of the Proper Forcing Axiom implies both that 2ω = ω2 and that [Formula: see text] satisfies the Axiom of Choice. It will also be demonstrated that this reflection principle implies that □ fails for all regular κ > ω1.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Guessing and non-guessing of canonical functions.David Asperó - 2007 - Annals of Pure and Applied Logic 146 (2):150-179.
    It is possible to control to a large extent, via semiproper forcing, the parameters measuring the guessing density of the members of any given antichain of stationary subsets of ω1 . Here, given a pair of ordinals, we will say that a stationary set Sω1 has guessing density if β0=γ and , where γ is, for every stationary S*ω1, the infimum of the set of ordinals τ≤ω1+1 for which there is a function with ot)<τ for all νS* and with {νS*:gF} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The size of $\tilde{T}$.Paul Larson - 2000 - Archive for Mathematical Logic 39 (7):541-568.
    Given a stationary subset T of $\omega_{1}$ , let $\tilde{T}$ be the set of ordinals in the interval $(\omega_{1}, \omega_{2})$ which are necessarily in the image of T by any embedding derived from the nonstationary ideal. We consider the question of the size of $\tilde{T}$ , givenT, and use Martin's Maximum and $\mathbb{P}_{max}$ to give some answers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations