Switch to: Citations

Add references

You must login to add references.
  1. Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • Sublattices of the Recursively Enumerable Degrees.S. K. Thomason - 1971 - Mathematical Logic Quarterly 17 (1):273-280.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The d.r.e. degrees are not dense.S. Barry Cooper, Leo Harrington, Alistair H. Lachlan, Steffen Lempp & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Partial degrees and the density problem. Part 2: The enumeration degrees of the ∑2 sets are dense.S. B. Cooper - 1984 - Journal of Symbolic Logic 49 (2):503 - 513.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On minimal pairs of enumeration degrees.Kevin McEvoy & S. Barry Cooper - 1985 - Journal of Symbolic Logic 50 (4):983-1001.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Definability in the enumeration degrees.Theodore A. Slaman & W. Hugh Woodin - 1997 - Archive for Mathematical Logic 36 (4-5):255-267.
    We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the first order (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Some Special Pairs of Σ2 e-Degrees.Seema Ahmad & Alistair H. Lachlan - 1998 - Mathematical Logic Quarterly 44 (4):431-449.
    It is shown that there are incomparable Σ2 e-degrees a, b such that every e-degree strictly less than a is also less than b.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Generic copies of countable structures.Chris Ash, Julia Knight, Mark Manasse & Theodore Slaman - 1989 - Annals of Pure and Applied Logic 42 (3):195-205.
    Download  
     
    Export citation  
     
    Bookmark   42 citations