Switch to: References

Add citations

You must login to add citations.
  1. Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On extensions of embeddings into the enumeration degrees of the -sets.Steffen Lempp, Theodore A. Slaman & Andrea Sorbi - 2005 - Journal of Mathematical Logic 5 (02):247-298.
    We give an algorithm for deciding whether an embedding of a finite partial order [Formula: see text] into the enumeration degrees of the [Formula: see text]-sets can always be extended to an embedding of a finite partial order [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On restricted forms of enumeration reducibility.Phil Watson - 1990 - Annals of Pure and Applied Logic 49 (1):75-96.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A jump inversion theorem for the enumeration jump.I. N. Soskov - 2000 - Archive for Mathematical Logic 39 (6):417-437.
    . We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
    We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure $L(\mathfrak D_s)$ of the s-degrees. However, $L(\mathfrak D_s)$ is not distributive. We show that on $\Delta^{0}_{2}$ sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for $L(\mathfrak D_s)$ . In particular $L(\mathfrak D_s)$ is upwards dense. Among the results about reducibilities that are stronger than s-reducibility, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (D\sb e) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Incomparability in local structures of s -degrees and Q -degrees.Irakli Chitaia, Keng Meng Ng, Andrea Sorbi & Yue Yang - 2020 - Archive for Mathematical Logic 59 (7-8):777-791.
    We show that for every intermediate \ s-degree there exists an incomparable \ s-degree. As a consequence, for every intermediate \ Q-degree there exists an incomparable \ Q-degree. We also show how these results can be applied to provide proofs or new proofs of upper density results in local structures of s-degrees and Q-degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Limit lemmas and jump inversion in the enumeration degrees.Evan J. Griffiths - 2003 - Archive for Mathematical Logic 42 (6):553-562.
    We show that there is a limit lemma for enumeration reducibility to 0 e ', analogous to the Shoenfield Limit Lemma in the Turing degrees, which relativises for total enumeration degrees. Using this and `good approximations' we prove a jump inversion result: for any set W with a good approximation and any set X< e W such that W≤ e X' there is a set A such that X≤ e A< e W and A'=W'. (All jumps are enumeration degree jumps.) (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Cupping and noncupping in the enumeration degrees of ∑20 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    We prove the following three theorems on the enumeration degrees of ∑20 sets. Theorem A: There exists a nonzero noncuppable ∑20 enumeration degree. Theorem B: Every nonzero Δ20enumeration degree is cuppable to 0′e by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Δ20 enumeration degree with the anticupping property.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Nondeterminism, Enumeration Reducibility and Polynomial Bounds.Kate Copestake - 1997 - Mathematical Logic Quarterly 43 (3):287-310.
    Enumeration reducibility is a notion of relative computability between sets of natural numbers where only positive information about the sets is used or produced. Extending e‐reducibility to partial functions characterises relative computability between partial functions. We define a polynomial time enumeration reducibility that retains the character of enumeration reducibility and show that it is equivalent to conjunctive non‐deterministic polynomial time reducibility. We define the polynomial time e‐degrees as the equivalence classes under this reducibility and investigate their structure on the recursive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other words (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Enumeration 1-Genericity in the Local Enumeration Degrees. [REVIEW]Liliana Badillo, Charles M. Harris & Mariya I. Soskova - 2018 - Notre Dame Journal of Formal Logic 59 (4):461-489.
    We discuss a notion of forcing that characterizes enumeration 1-genericity, and we investigate the immunity, lowness, and quasiminimality properties of enumeration 1-generic sets and their degrees. We construct an enumeration operator Δ such that, for any A, the set ΔA is enumeration 1-generic and has the same jump complexity as A. We deduce from this and other recent results from the literature that not only does every degree a bound an enumeration 1-generic degree b such that a'=b', but also that, (...))
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Avoiding uniformity in the Δ 2 0 enumeration degrees.Liliana Badillo & Charles M. Harris - 2014 - Annals of Pure and Applied Logic 165 (9):1355-1379.
    Defining a class of sets to be uniform Δ02 if it is derived from a binary {0,1}{0,1}-valued function f≤TKf≤TK, we show that, for any C⊆DeC⊆De induced by such a class, there exists a high Δ02 degree c which is incomparable with every degree b ϵ Ce \ {0e, 0'e}. We show how this result can be applied to quite general subclasses of the Ershov Hierarchy and we also prove, as a direct corollary, that every nonzero low degree caps with both (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)A high noncuppable $${\Sigma^0_2}$$ e-degree.Matthew B. Giorgi - 2008 - Archive for Mathematical Logic 47 (3):181-191.
    We construct a ${\Sigma^0_2}$ e-degree which is both high and noncuppable. Thus demonstrating the existence of a high e-degree whose predecessors are all properly ${\Sigma^0_2}$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation