Switch to: Citations

Add references

You must login to add references.
  1. There is No Low Maximal D.C.E. Degree.Marat Arslanov, S. Barry Cooper & Angsheng Li - 2000 - Mathematical Logic Quarterly 46 (3):409-416.
    We show that for any computably enumerable set A and any equation image set L, if L is low and equation image, then there is a c.e. splitting equation image such that equation image. In Particular, if L is low and n-c.e., then equation image is n-c.e. and hence there is no low maximal n-c.e. degree.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gerald E. Sacks. The recursively enumerable degrees are dense. Annals of mathematics, ser. 2 vol. 80 (1964), pp. 300–312. [REVIEW]Gerald E. Sacks - 1969 - Journal of Symbolic Logic 34 (2):294-295.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The d.r.e. degrees are not dense.S. Barry Cooper, Leo Harrington, Alistair H. Lachlan, Steffen Lempp & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Relative enumerability in the difference hierarchy.Marat Arslanov, Geoffrey Laforte & Theodore Slaman - 1998 - Journal of Symbolic Logic 63 (2):411-420.
    We show that the intersection of the class of 2-REA degrees with that of the ω-r.e. degrees consists precisely of the class of d.r.e. degrees. We also include some applications and show that there is no natural generalization of this result to higher levels of the REA hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A recursively enumerable degree which will not split over all lesser ones.Alistair H. Lachlan - 1976 - Annals of Mathematical Logic 9 (4):307.
    Download  
     
    Export citation  
     
    Bookmark   39 citations