Switch to: References

Add citations

You must login to add citations.
  1. The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
    The computable Lipschitz reducibility was introduced by Downey, Hirschfeldt and LaForte under the name of strong weak truth-table reducibility [6]). This reducibility measures both the relative randomness and the relative computational power of real numbers. This paper proves that the computable Lipschitz degrees of computably enumerable sets are not dense. An immediate corollary is that the Solovay degrees of strongly c.e. reals are not dense. There are similarities to Barmpalias and Lewis’ proof that the identity bounded Turing degrees of c.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Turing's o-machines, Searle, Penrose, and the brain.Jack Copeland - 1998 - Analysis 58 (2):128-138.
    In his PhD thesis (1938) Turing introduced what he described as 'a new kind of machine'. He called these 'O-machines'. The present paper employs Turing's concept against a number of currently fashionable positions in the philosophy of mind.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Turing's O-machines, Searle, Penrose and the brain.B. J. Copeland - 1998 - Analysis 58 (2):128-138.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Lattice nonembeddings and intervals of the recursively enumerable degrees.Peter Cholak & Rod Downey - 1993 - Annals of Pure and Applied Logic 61 (3):195-221.
    Let b and c be r.e. Turing degrees such that b>c. We show that there is an r.e. degree a such that b>a>c and all lattices containing a critical triple, including the lattice M5, cannot be embedded into the interval [c, a].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (D\sb e) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Incomparable prime ideals of recursively enumerable degrees.William C. Calhoun - 1993 - Annals of Pure and Applied Logic 63 (1):39-56.
    Calhoun, W.C., Incomparable prime ideals of recursively enumerable degrees, Annals of Pure and Applied Logic 63 39–56. We show that there is a countably infinite antichain of prime ideals of recursively enumerable degrees. This solves a generalized form of Post's problem.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The d.r.e. degrees are not dense.S. Barry Cooper, Leo Harrington, Alistair H. Lachlan, Steffen Lempp & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Interpolating d-r.e. and REA degrees between r.e. degrees.Marat Arslanov, Steffen Lempp & Richard A. Shore - 1996 - Annals of Pure and Applied Logic 78 (1-3):29-56.
    We provide three new results about interpolating 2-r.e. or 2-REA degrees between given r.e. degrees: Proposition 1.13. If c h are r.e. , c is low and h is high, then there is an a h which is REA in c but not r.e. Theorem 2.1. For all high r.e. degrees h g there is a properly d-r.e. degree a such that h a g and a is r.e. in h . Theorem 3.1. There is an incomplete nonrecursive r.e. A (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Nonisolated degrees and the jump operator.Guohua Wu - 2002 - Annals of Pure and Applied Logic 117 (1-3):209-221.
    Say that a d.c.e. degree d is nonisolated if for any c.e. degree a
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Intervals containing exactly one c.e. degree.Guohua Wu - 2007 - Annals of Pure and Applied Logic 146 (1):91-102.
    Cooper proved in [S.B. Cooper, Strong minimal covers for recursively enumerable degrees, Math. Logic Quart. 42 191–196] the existence of a c.e. degree with a strong minimal cover . So is the greastest c.e. degree below . Cooper and Yi pointed out in [S.B. Cooper, X. Yi, Isolated d.r.e. degrees, University of Leeds, Dept. of Pure Math., 1995. Preprint] that this strongly minimal cover cannot be d.c.e., and meanwhile, they proposed the notion of isolated degrees: a d.c.e. degree is isolated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A non-splitting theorem in the enumeration degrees.Mariya Ivanova Soskova - 2009 - Annals of Pure and Applied Logic 160 (3):400-418.
    We complete a study of the splitting/non-splitting properties of the enumeration degrees below by proving an analog of Harrington’s non-splitting theorem for the enumeration degrees. We show how non-splitting techniques known from the study of the c.e. Turing degrees can be adapted to the enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets.Robert I. Soare - 1982 - Annals of Mathematical Logic 22 (1):69.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The density of infima in the recursively enumerable degrees.Theodore A. Slaman - 1991 - Annals of Pure and Applied Logic 52 (1-2):155-179.
    We show that every nontrivial interval in the recursively enumerable degrees contains an incomparable pair which have an infimum in the recursively enumerable degrees.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Degree structures: Local and global investigations.Richard A. Shore - 2006 - Bulletin of Symbolic Logic 12 (3):369-389.
    The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.Institutionally, it was an honor to serve as President of the Association and I want to thank my teachers and predecessors for guidance and advice and my fellow officers and our publisher for their work and support. To all of the members who answered my calls to chair or serve on this or that committee, I offer my thanks as well. Your (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conjectures and questions from Gerald Sacks's Degrees of Unsolvability.Richard A. Shore - 1997 - Archive for Mathematical Logic 36 (4-5):233-253.
    We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Parameter definability in the recursively enumerable degrees.André Nies - 2003 - Journal of Mathematical Logic 3 (01):37-65.
    The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the [Formula: see text] relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k ≥ 7, the [Formula: see text] relations bounded from below by a nonzero degree are uniformly definable. As applications, we show that Low 1 is parameter definable, and we provide methods that lead to a new example of a ∅-definable ideal. Moreover, we prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Definability in the recursively enumerable degrees.André Nies, Richard A. Shore & Theodore A. Slaman - 1996 - Bulletin of Symbolic Logic 2 (4):392-404.
    §1. Introduction. Natural sets that can be enumerated by a computable function always seem to be either actually computable or of the same complexity as the Halting Problem, the complete r.e. set K. The obvious question, first posed in Post [1944] and since then called Post's Problem is then just whether there are r.e. sets which are neither computable nor complete, i.e., neither recursive nor of the same Turing degree as K?Let be the r.e. degrees, i.e., the r.e. sets modulo (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Weak Density and Nondensity among Transfinite Levels of the Ershov Hierarchy.Yong Liu & Cheng Peng - 2020 - Notre Dame Journal of Formal Logic 61 (4):521-536.
    We show that for any ω-r.e. degree d and n-r.e. degree b with d
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • There Are No Maximal Low D.C.E. Degrees.Liang Yu & Rod Downey - 2004 - Notre Dame Journal of Formal Logic 45 (3):147-159.
    We prove that there is no maximal low d.c.e degree.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some minimal pairs of alpha-recursively enumerable degrees.Manuel Lerman - 1972 - Annals of Mathematical Logic 4 (4):415.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A recursively enumerable degree which will not split over all lesser ones.Alistair H. Lachlan - 1976 - Annals of Mathematical Logic 9 (4):307.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Generic degrees are complemented.Masahiro Kumabe - 1993 - Annals of Pure and Applied Logic 59 (3):257-272.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Infima in the d.r.e. degrees.D. Kaddah - 1993 - Annals of Pure and Applied Logic 62 (3):207-263.
    This paper analyzes several properties of infima in Dn, the n-r.e. degrees. We first show that, for every n> 1, there are n-r.e. degrees a, b, and c, and an -r.e. degree x such that a < x < b, c and, in Dn, b c = a. We also prove a related result, namely that there are two d.r.e. degrees that form a minimal pair in Dn, for each n < ω, but that do not form a minimal pair (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Sacks density theorem and Σ2-bounding.Marcia J. Groszek, Michael E. Mytilinaios & Theodore A. Slaman - 1996 - Journal of Symbolic Logic 61 (2):450 - 467.
    The Sacks Density Theorem [7] states that the Turing degrees of the recursively enumerable sets are dense. We show that the Density Theorem holds in every model of P - + BΣ 2 . The proof has two components: a lemma that in any model of P - + BΣ 2 , if B is recursively enumerable and incomplete then IΣ 1 holds relative to B and an adaptation of Shore's [9] blocking technique in α-recursion theory to models of arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The role of true finiteness in the admissible recursively enumerable degrees.Noam Greenberg - 2005 - Bulletin of Symbolic Logic 11 (3):398-410.
    We show, however, that this is not always the case.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The density of the nonbranching degrees.Peter A. Fejer - 1983 - Annals of Pure and Applied Logic 24 (2):113-130.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Intervals and sublattices of the R.E. weak truth table degrees, part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Completely mitotic R.E. degrees.R. G. Downey & T. A. Slaman - 1989 - Annals of Pure and Applied Logic 41 (2):119-152.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.
    In this article we show that it is possible to completely classify the degrees of r.e. bases of r.e. vector spaces in terms of weak truth table degrees. The ideas extend to classify the degrees of complements and splittings. Several ramifications of the classification are discussed, together with an analysis of the structure of the degrees of pairs of r.e. summands of r.e. spaces.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Complementing cappable degrees in the difference hierarchy.Rod Downey, Angsheng Li & Guohua Wu - 2004 - Annals of Pure and Applied Logic 125 (1-3):101-118.
    We prove that for any computably enumerable degree c, if it is cappable in the computably enumerable degrees, then there is a d.c.e. degree d such that c d = 0′ and c ∩ d = 0. Consequently, a computably enumerable degree is cappable if and only if it can be complemented by a nonzero d.c.e. degree. This gives a new characterization of the cappable degrees.
    Download  
     
    Export citation  
     
    Bookmark