Switch to: Citations

Add references

You must login to add references.
  1. Galois-stability for Tame abstract elementary classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Mathematical Logic 6 (01):25-48.
    We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper, we explore stability results in this new context. We assume that [Formula: see text] is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include:. Theorem 0.1. Suppose that [Formula: see text] is not only tame, but [Formula: see text]-tame. If [Formula: see text] and [Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Categoricity.John T. Baldwin - 2009 - American Mathematical Society.
    CHAPTER 1 Combinatorial Geometries and Infinitary Logics In this chapter we introduce two of the key concepts that are used throughout the text. ...
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (2 other versions)Pseudo-exponentiation on algebraically closed fields of characteristic zero.Boris Zilber - 2005 - Annals of Pure and Applied Logic 132 (1):67-95.
    We construct and study structures imitating the field of complex numbers with exponentiation. We give a natural, albeit non first-order, axiomatisation for the corresponding class of structures and prove that the class has a unique model in every uncountable cardinality. This gives grounds to conjecture that the unique model of cardinality continuum is isomorphic to the field of complex numbers with exponentiation.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Upward Stability Transfer for Tame Abstract Elementary Classes.John Baldwin, David Kueker & Monica VanDieren - 2006 - Notre Dame Journal of Formal Logic 47 (2):291-298.
    Grossberg and VanDieren have started a program to develop a stability theory for tame classes. We name some variants of tameness and prove the following. Let K be an AEC with Löwenheim-Skolem number ≤κ. Assume that K satisfies the amalgamation property and is κ-weakly tame and Galois-stable in κ. Then K is Galois-stable in κ⁺ⁿ for all n<ω. With one further hypothesis we get a very strong conclusion in the countable case. Let K be an AEC satisfying the amalgamation property (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Accessible categories, saturation and categoricity.Jiri Rosicky - 1997 - Journal of Symbolic Logic 62 (3):891-901.
    Model-theoretic concepts of saturation and categoricity are studied in the context of accessible categories. Accessible categories which are categorical in a strong sense are related to categories of $M$-sets ($M$ is a monoid). Typical examples of such categories are categories of $\lambda$-saturated objects.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Categoricity in abstract elementary classes with no maximal models.Monica VanDieren - 2006 - Annals of Pure and Applied Logic 141 (1):108-147.
    The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which the amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here we tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity under the assumption that the subclass of amalgamation bases is closed under unions of bounded, -increasing chains.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • (2 other versions)Algebraically closed field with pseudo-exponentiation.B. Zilber - 2005 - Annals of Pure and Applied Logic 132 (1):67-95.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Shelah's Categoricity Conjecture from a Successor for Tame Abstract Elementary Classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Symbolic Logic 71 (2):553 - 568.
    We prove a categoricity transfer theorem for tame abstract elementary classes. Theorem 0.1. Suppose that K is a χ-tame abstract elementary class and satisfies the amalgamation and joint embedding properties and has arbitrarily large models. Let λ ≥ Max{χ.LS(K)⁺}. If K is categorical in λ and λ⁺, then K is categorical in λ⁺⁺. Combining this theorem with some results from [37], we derive a form of Shelah's Categoricity Conjecture for tame abstract elementary classes: Corollary 0.2. Suppose K is a χ-tame (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations