Switch to: Citations

Add references

You must login to add references.
  1. Category-theoretic aspects of abstract elementary classes.Michael J. Lieberman - 2011 - Annals of Pure and Applied Logic 162 (11):903-915.
    We highlight connections between accessible categories and abstract elementary classes , and provide a dictionary for translating properties and results between the two contexts. We also illustrate a few applications of purely category-theoretic methods to the study of AECs, with model-theoretically novel results. In particular, the category-theoretic approach yields two surprising consequences: a structure theorem for categorical AECs, and a partial stability spectrum for weakly tame AECs.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Classification theory for accessible categories.M. Lieberman & J. Rosický - 2016 - Journal of Symbolic Logic 81 (1):151-165.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tameness from large cardinal axioms.Will Boney - 2014 - Journal of Symbolic Logic 79 (4):1092-1119.
    We show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A topology for galois types in abstract elementary classes.Michael Lieberman - 2011 - Mathematical Logic Quarterly 57 (2):204-216.
    We present a way of topologizing sets of Galois types over structures in abstract elementary classes with amalgamation. In the elementary case, the topologies thus produced refine the syntactic topologies familiar from first order logic. We exhibit a number of natural correspondences between the model-theoretic properties of classes and their constituent models and the topological properties of the associated spaces. Tameness of Galois types, in particular, emerges as a topological separation principle. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abstract elementary classes and accessible categories.Tibor Beke & Jirí Rosický - 2012 - Annals of Pure and Applied Logic 163 (12):2008-2017.
    We investigate properties of accessible categories with directed colimits and their relationship with categories arising from ShelahʼsElementary Classes. We also investigate ranks of objects in accessible categories, and the effect of accessible functors on ranks.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A presentation theorem for continuous logic and metric abstract elementary classes.Will Boney - 2017 - Mathematical Logic Quarterly 63 (5):397-414.
    In recent years, model theory has widened its scope to include metric structures by considering real-valued models whose underlying set is a complete metric space. We show that it is possible to carry out this work by giving presentation theorems that translate the two main frameworks into discrete settings. We also translate various notions of classification theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Limit models in metric abstract elementary classes: the categorical case.Andrés Villaveces & Pedro Zambrano - 2016 - Mathematical Logic Quarterly 62 (4-5):319-334.
    We study versions of limit models adapted to the context of metric abstract elementary classes. Under categoricity and superstability-like assumptions, we generalize some theorems from 7, 15-17. We prove criteria for existence and uniqueness of limit models in the metric context.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Accessible categories, saturation and categoricity.Jiri Rosicky - 1997 - Journal of Symbolic Logic 62 (3):891-901.
    Model-theoretic concepts of saturation and categoricity are studied in the context of accessible categories. Accessible categories which are categorical in a strong sense are related to categories of $M$-sets ($M$ is a monoid). Typical examples of such categories are categories of $\lambda$-saturated objects.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Categoricity in homogeneous complete metric spaces.Åsa Hirvonen & Tapani Hyttinen - 2009 - Archive for Mathematical Logic 48 (3-4):269-322.
    We introduce a new approach to the model theory of metric structures by defining the notion of a metric abstract elementary class (MAEC) closely resembling the notion of an abstract elementary class. Further we define the framework of a homogeneous MAEC were we additionally assume the existence of arbitrarily large models, joint embedding, amalgamation, homogeneity and a property which we call the perturbation property. We also assume that the Löwenheim-Skolem number, which in this setting refers to the density character of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Infinitary stability theory.Sebastien Vasey - 2016 - Archive for Mathematical Logic 55 (3-4):567-592.
    We introduce a new device in the study of abstract elementary classes : Galois Morleyization, which consists in expanding the models of the class with a relation for every Galois type of length less than a fixed cardinal κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}. We show:Theorem 0.1 An AEC K is fully \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = \beth _{\kappa } > \text {LS}$$\end{document}. If K is Galois stable, then the (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations