Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)On Denoting.Bertrand Russell - 1905 - Mind 14 (56):479-493.
    By a `denoting phrase' I mean a phrase such as any one of the following: a man, some man, any man, every man, all men, the present King of England, the present King of France, the center of mass of the solar system at the first instant of the twentieth century, the revolution of the earth round the sun, the revolution of the sun round the earth. Thus a phrase is denoting solely in virtue of its form. We may distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   1267 citations  
  • (1 other version)On Denoting.Bertrand Russell - 2005 - Mind 114 (456):873 - 887.
    By a `denoting phrase' I mean a phrase such as any one of the following: a man, some man, any man, every man, all men, the present King of England, the present King of France, the center of mass of the solar system at the first instant of the twentieth century, the revolution of the earth round the sun, the revolution of the sun round the earth. Thus a phrase is denoting solely in virtue of its form. We may distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   667 citations  
  • Intensional Logic and the Metaphysics of Intentionality.Edward N. Zalta - 1988 - Cambridge, MA, USA: MIT Press.
    This book tackles the issues that arise in connection with intensional logic -- a formal system for representing and explaining the apparent failures of certain important principles of inference such as the substitution of identicals and existential generalization -- and intentional states --mental states such as beliefs, hopes, and desires that are directed towards the world. The theory offers a unified explanation of the various kinds of inferential failures associated with intensional logic but also unifies the study of intensional contexts (...)
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • Abstract Objects: An Introduction to Axiomatic Metaphysics.Edward N. Zalta - 1983 - Dordrecht, Netherland: D. Reidel.
    In this book, Zalta attempts to lay the axiomatic foundations of metaphysics by developing and applying a (formal) theory of abstract objects. The cornerstones include a principle which presents precise conditions under which there are abstract objects and a principle which says when apparently distinct such objects are in fact identical. The principles are constructed out of a basic set of primitive notions, which are identified at the end of the Introduction, just before the theorizing begins. The main reason for (...)
    Download  
     
    Export citation  
     
    Bookmark   181 citations  
  • Naturalized platonism versus platonized naturalism.Bernard Linsky & Edward N. Zalta - 1995 - Journal of Philosophy 92 (10):525-555.
    In this paper, we develop an alternative strategy, Platonized Naturalism, for reconciling naturalism and Platonism and to account for our knowledge of mathematical objects and properties. A systematic (Principled) Platonism based on a comprehension principle that asserts the existence of a plenitude of abstract objects is not just consistent with, but required (on transcendental grounds) for naturalism. Such a comprehension principle is synthetic, and it is known a priori. Its synthetic a priori character is grounded in the fact that it (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Frege: The Last Logicist.Paul Benacerraf - 1981 - Midwest Studies in Philosophy 6 (1):17-36.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Referring to fictional characters.Edward N. Zalta - 2003 - Dialectica 57 (2):243–254.
    The author engages a question raised about theories of nonexistent objects. The question concerns the way names of fictional characters, when analyzed as names which denote nonexistent objects, acquire their denotations. Since nonexistent objects cannot causally interact with existent objects, it is thought that we cannot appeal to a `dubbing' or a `baptism'. The question is, therefore, what is the starting point of the chain? The answer is that storytellings are to be thought of as extended baptisms, and the details (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Fregean Senses, Modes of Presentation, and Concepts.Edward N. Zalta - 2001 - Noûs 35 (s15):335-359.
    Many philosophers, including direct reference theorists, appeal to naively to 'modes of presentation' in the analysis of belief reports. I show that a variety of such appeals can be analyzed in terms of a precise theory of modes of presentation. The objects that serve as modes are identified intrinsically, in a noncircular way, and it is shown that they can function in the required way. It is a consequence of the intrinsic characterization that some objects are well-suited to serve as (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Neo-logicism? An ontological reduction of mathematics to metaphysics.Edward N. Zalta - 2000 - Erkenntnis 53 (1-2):219-265.
    In this paper, we describe "metaphysical reductions", in which the well-defined terms and predicates of arbitrary mathematical theories are uniquely interpreted within an axiomatic, metaphysical theory of abstract objects. Once certain (constitutive) facts about a mathematical theory T have been added to the metaphysical theory of objects, theorems of the metaphysical theory yield both an analysis of the reference of the terms and predicates of T and an analysis of the truth of the sentences of T. The well-defined terms and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Referring to Mathematical Objects via Definite Descriptions.Stefan Buijsman - 2017 - Philosophia Mathematica 25 (1):128-138.
    Linsky and Zalta try to explain how we can refer to mathematical objects by saying that this happens through definite descriptions which may appeal to mathematical theories. I present two issues for their account. First, there is a problem of finding appropriate pre-conditions to reference, which are currently difficult to satisfy. Second, there is a problem of ensuring the stability of the resulting reference. Slight changes in the properties ascribed to a mathematical object can result in a shift of reference (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations