Switch to: References

Add citations

You must login to add citations.
  1. Is Intuition Based On Understanding?[I thank Jo].Elijah Chudnoff - 2013 - Philosophy and Phenomenological Research 86 (1):42-67.
    According to the most popular non-skeptical views about intuition, intuitions justify beliefs because they are based on understanding. More precisely: if intuiting that p justifies you in believing that p it does so because your intuition is based on your understanding of the proposition that p. The aim of this paper is to raise some challenges for accounts of intuitive justification along these lines. I pursue this project from a non-skeptical perspective. I argue that there are cases in which intuiting (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Carl Hempel.James Fetzer - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Frege on definitions.Sanford Shieh - 2008 - Philosophy Compass 3 (5):992-1012.
    This article treats three aspects of Frege's discussions of definitions. First, I survey Frege's main criticisms of definitions in mathematics. Second, I consider Frege's apparent change of mind on the legitimacy of contextual definitions and its significance for recent neo-Fregean logicism. In the remainder of the article I discuss a critical question about the definitions on which Frege's proofs of the laws of arithmetic depend: do the logical structures of the definientia reflect the understanding of arithmetical terms prevailing prior to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Frege and Kant on a priori knowledge.Graciela Pierris - 1988 - Synthese 77 (3):285 - 319.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • El escepticismo williamsoniano sobre la utilidad epistémica de la distinción a priori/a posteriori.Emilio Méndez Pinto - 2023 - Dissertation, National Autonomous University of Mexico
    Jurado: Mario Gómez-Torrente (presidente), Miguel Ángel Fernández Vargas (vocal), Santiago Echeverri Saldarriaga (secretario). [Graduado con Mención Honorífica.].
    Download  
     
    Export citation  
     
    Bookmark  
  • The Caesar Problem — A Piecemeal Solution.J. P. Studd - 2023 - Philosophia Mathematica 31 (2):236-267.
    The Caesar problem arises for abstractionist views, which seek to secure reference for terms such as ‘the number of Xs’ or #X by stipulating the content of ‘unmixed’ identity contexts like ‘#X = #Y’. Frege objects that this stipulation says nothing about ‘mixed’ contexts such as ‘# X = Julius Caesar’. This article defends a neglected response to the Caesar problem: the content of mixed contexts is just as open to stipulation as that of unmixed contexts.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege on the Fruitfulness of Definitions.Rachel Boddy - 2021 - Journal for the History of Analytical Philosophy 9 (11).
    What, in Frege’s view, makes definitions fruitful? In Grundlagen §70, Frege offers an answer: Unfruitful definitions are definitions that “could just as well be omitted and leave no link missing in the chain of our proofs”. The §70 passage, however, poses an interpretive puzzle as its characterization of fruitfulness appears to conflict with other conditions that Frege imposes on definitions, namely, eliminability and conservativeness. It appears that the only way to resolve this conflict is to attribute to Frege a notion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetic, Logicism, and Frege’s Definitions.Timothy Perrine - 2021 - International Philosophical Quarterly 61 (1):5-25.
    This paper describes both an exegetical puzzle that lies at the heart of Frege’s writings—how to reconcile his logicism with his definitions and claims about his definitions—and two interpretations that try to resolve that puzzle, what I call the “explicative interpretation” and the “analysis interpretation.” This paper defends the explicative interpretation primarily by criticizing the most careful and sophisticated defenses of the analysis interpretation, those given my Michael Dummett and Patricia Blanchette. Specifically, I argue that Frege’s text either are inconsistent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic, Logicism, and Intuitions in Mathematics.Besim Karakadılar - 2001 - Dissertation, Middle East Technical University
    In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Identifying finite cardinal abstracts.Sean C. Ebels-Duggan - 2020 - Philosophical Studies 178 (5):1603-1630.
    Objects appear to fall into different sorts, each with their own criteria for identity. This raises the question of whether sorts overlap. Abstractionists about numbers—those who think natural numbers are objects characterized by abstraction principles—face an acute version of this problem. Many abstraction principles appear to characterize the natural numbers. If each abstraction principle determines its own sort, then there is no single subject-matter of arithmetic—there are too many numbers. That is, unless objects can belong to more than one sort. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logicism, Ontology, and the Epistemology of Second-Order Logic.Richard Kimberly Heck - 2018 - In Ivette Fred Rivera & Jessica Leech (eds.), Being Necessary: Themes of Ontology and Modality from the Work of Bob Hale. Oxford, England: Oxford University Press. pp. 140-169.
    In two recent papers, Bob Hale has attempted to free second-order logic of the 'staggering existential assumptions' with which Quine famously attempted to saddle it. I argue, first, that the ontological issue is at best secondary: the crucial issue about second-order logic, at least for a neo-logicist, is epistemological. I then argue that neither Crispin Wright's attempt to characterize a `neutralist' conception of quantification that is wholly independent of existential commitment, nor Hale's attempt to characterize the second-order domain in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s Constraint and the Nature of Frege’s Foundational Program.Marco Panza & Andrea Sereni - 2019 - Review of Symbolic Logic 12 (1):97-143.
    Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ ($AC$) or ‘Frege Constraint’ ($FC$), the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how$AC$generalizes Frege’s views while$FC$comes closer to his original conceptions. Different authors diverge on the interpretation of$FC$and on whether it (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege’s Unification.Rachel Boddy - 2018 - History and Philosophy of Logic 40 (2):135-151.
    What makes certain definitions fruitful? And how can definitions play an explanatory role? The purpose of this paper is to examine these questions via an investigation of Frege’s treatment of definitions. Specifically, I pursue this issue via an examination of Frege’s views about the scientific unification of logic and arithmetic. In my view, what interpreters have failed to appreciate is that logicism is a project of unification, not reduction. For Frege, unification involves two separate steps: (1) an account of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Twentieth century.Robert Hanna - 2008 - In Dermot Moran (ed.), The Routledge Companion to Twentieth Century Philosophy. Routledge. pp. 149.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The caesar problem in its historical context: Mathematical background.Jamie Tappenden - 2005 - Dialectica 59 (2):237–264.
    The issues surrounding the Caesar problem are assumed to be inert as far as ongoing mathematics is concerned. This paper aims to correct this impression by spelling out the ways that, in their historical context, Frege's remarks would have had considerable resonance with work that other mathematicians such as Riemann and Dedekind were doing. The search for presentation‐independent characterizations of objects and global definitions was seen as bound up with fundamental methodological questions in complex analysis and number theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Linnebo's Abstractionism and the Bad Company Problem.J. P. Studd - 2023 - Theoria 89 (3):366-392.
    In Thin Objects: An Abstractionist Account, Linnebo offers what he describes as a “simple and definitive” solution to the bad company problem facing abstractionist accounts of mathematics. “Bad” abstraction principles can be rendered “good” by taking abstraction to have a predicative character. But the resulting predicative axioms are too weak to recover substantial portions of mathematics. Linnebo pursues two quite different strategies to overcome this weakness in the case of set theory and arithmetic. I argue that neither infinitely iterated abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The applicabilities of mathematics.Mark Steiner - 1995 - Philosophia Mathematica 3 (2):129-156.
    Discussions of the applicability of mathematics in the natural sciences have been flawed by failure to realize that there are multiple senses in which mathematics can be ‘applied’ and, correspondingly, multiple problems that stem from the applicability of mathematics. I discuss semantic, metaphysical, descriptive, and and epistemological problems of mathematical applicability, dwelling on Frege's contribution to the solution of the first two types. As for the remaining problems, I discuss the contributions of Hartry Field and Eugene Wigner. Finally, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Fregean abstraction, referential indeterminacy and the logical foundations of arithmetic.Matthias Schirn - 2003 - Erkenntnis 59 (2):203 - 232.
    In Die Grundlagen der Arithmetik, Frege attempted to introduce cardinalnumbers as logical objects by means of a second-order abstraction principlewhich is now widely known as ``Hume's Principle'' (HP): The number of Fsis identical with the number of Gs if and only if F and G are equinumerous.The attempt miscarried, because in its role as a contextual definition HP fails tofix uniquely the reference of the cardinality operator ``the number of Fs''. Thisproblem of referential indeterminacy is usually called ``the Julius Caesar (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The analytic/synthetic distinction.Gillian Russell - 2007 - Philosophy Compass 2 (5):712–729.
    Once a standard tool in the epistemologist’s kit, the analytic/synthetic distinction was challenged by Quine and others in the mid-twentieth century and remains controversial today. But although the work of a lot contemporary philosophers touches on this distinction – in the sense that it either has consequences for it, or it assumes results about it – few have really focussed on it recently. This has the consequence that a lot has happened that should affect our view of the analytic/synthetic distinction, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Frege on the psychological significance of definitions.John F. Horty - 1993 - Philosophical Studies 72 (2-3):223 - 263.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dummett and Frege on the philosophy of mathematics.Alex Oliver - 1994 - Inquiry: An Interdisciplinary Journal of Philosophy 37 (3):349 – 392.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Unity of Wittgenstein's Philosophy: Necessity, Intelligibility, and Normativity.Jose Medina - 2002 - State University of New York Press.
    Explores the stable core of Wittgenstein's philosophy as developed from the Tractatus to the Philosophical Investigations.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • On finite hume.Fraser Macbride - 2000 - Philosophia Mathematica 8 (2):150-159.
    Neo-Fregeanism contends that knowledge of arithmetic may be acquired by second-order logical reflection upon Hume's principle. Heck argues that Hume's principle doesn't inform ordinary arithmetical reasoning and so knowledge derived from it cannot be genuinely arithmetical. To suppose otherwise, Heck claims, is to fail to comprehend the magnitude of Cantor's conceptual contribution to mathematics. Heck recommends that finite Hume's principle be employed instead to generate arithmetical knowledge. But a better understanding of Cantor's contribution is achieved if it is supposed that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical descriptions.Bernard Linsky & Edward N. Zalta - 2019 - Philosophical Studies 176 (2):473-481.
    In this paper, the authors briefly summarize how object theory uses definite descriptions to identify the denotations of the individual terms of theoretical mathematics and then further develop their object-theoretic philosophy of mathematics by showing how it has the resources to address some objections recently raised against the theory. Certain ‘canonical’ descriptions of object theory, which are guaranteed to denote, correctly identify mathematical objects for each mathematical theory T, independently of how well someone understands the descriptive condition. And to have (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • William Demopoulos logicism and its philosophical legacy.Bob Hale - 2015 - British Journal for the Philosophy of Science 66 (2):459-463.
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell's Unknown Logicism: A Study in the History and Philosophy of Mathematics.Sébastien Gandon - 2012 - Houndmills, England and New York: Palgrave-Macmillan.
    In this excellent book Sebastien Gandon focuses mainly on Russell's two major texts, Principa Mathematica and Principle of Mathematics, meticulously unpicking the details of these texts and bringing a new interpretation of both the mathematical and the philosophical content. Winner of The Bertrand Russell Society Book Award 2013.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)What is in a Definition? Understanding Frege’s Account.Edward Kanterian - 2018 - Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 9:7-46.
    Joan Weiner (2007) has argued that Frege’s definitions of numbers are linguistic stipulations, with no content-preserving or ontological point: they don’t capture any determinate content of numerals, as they have none, and don’t present numbers as preexisting objects. I show that this view is based on exegetical and systematic errors. First, Idemonstrate that Weiner misrepresents the Fregean notions of ‘Foundations-content’, sense, reference, and truth. I then consider the role of definitions, demonstrating that they cannot be mere linguistic stipulations, since they (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege's Definition of Number: No Ontological Agenda?Edward Kanterian - 2010 - Hungarian Philosophical Review 54 (4):76-92.
    Joan Weiner has argued that Frege’s definitions of numbers constitute linguistic stipulations that carry no ontological commitment: they don’t present numbers as pre-existing objects. This paper offers a critical discussion of this view, showing that it is vitiated by serious exegetical errors and that it saddles Frege’s project with insuperable substantive difficulties. It is first demonstrated that Weiner misrepresents the Fregean notions of so-called Foundations-content, and of sense, reference, and truth. The discussion then focuses on the role of definitions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logicism and Neologicism.Neil Tennant - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The neo-Fregean program in the philosophy of arithmetic.William Demopoulos - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 87--112.
    Download  
     
    Export citation  
     
    Bookmark   1 citation