Switch to: Citations

Add references

You must login to add references.
  1. Analytic ideals.Sławomir Solecki - 1996 - Bulletin of Symbolic Logic 2 (3):339-348.
    §1. Introduction. Ideals and filters of subsets of natural numbers have been studied by set theorists and topologists for a long time. There is a vast literature concerning various kinds of ultrafilters. There is also a substantial interest in nicely definable ideals—these by old results of Sierpiński are very far from being maximal— and the structure of such ideals will concern us in this announcement. In addition to being interesting in their own right, Borel and analytic ideals occur naturally in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Closed measure zero sets.Tomek Bartoszynski & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (2):93-110.
    Bartoszynski, T. and S. Shelah, Closed measure zero sets, Annals of Pure and Applied Logic 58 93–110. We study the relationship between the σ-ideal generated by closed measure zero sets and the ideals of null and meager sets. We show that the additivity of the ideal of closed measure zero sets is not bigger than covering for category. As a consequence we get that the additivity of the ideal of closed measure zero sets is equal to the additivity of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Borel partitions of infinite subtrees of a perfect tree.A. Louveau, S. Shelah & B. Veličković - 1993 - Annals of Pure and Applied Logic 63 (3):271-281.
    Louveau, A., S. Shelah and B. Velikovi, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Borel partitions of infinite subtrees of a perfect tree.A. Louveau, S. Shelah & B. Velikovi - 1993 - Annals of Pure and Applied Logic 63 (3):271-281.
    Louveau, A., S. Shelah and B. Velikovi, Borel partitions of infinite subtrees of a perfect tree, Annals of Pure and Applied Logic 63 271–281. We define a notion of type of a perfect tree and show that, for any given type τ, if the set of all subtrees of a given perfect tree T which have type τ is partitioned into two Borel classes then there is a perfect subtree S of T such that all subtrees of S of type (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations