Switch to: Citations

Add references

You must login to add references.
  1. An explication of the causal dimension of drift.Peter Gildenhuys - 2009 - British Journal for the Philosophy of Science 60 (3):521-555.
    Among philosophers, controversy over the notion of drift in population genetics is ongoing. This is at least partly because the notion of drift has an ambiguous usage among population geneticists. My goal in this paper is to explicate the causal dimension of drift, to say what causal influences are responsible for the stochasticity in population genetics models. It is commonplace for population genetics to oppose the influence of selection to that of drift, and to consider how the dynamics of populations (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What's wrong with the emergentist statistical interpretation of natural selection and random drift.Robert N. Brandon & Grant Ramsey - 2007 - In David L. Hull & Michael Ruse (eds.), The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press. pp. 66--84.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The nature of selection: evolutionary theory in philosophical focus.Elliott Sober - 1984 - Chicago: University of Chicago Press.
    The Nature of Selection is a straightforward, self-contained introduction to philosophical and biological problems in evolutionary theory. It presents a powerful analysis of the evolutionary concepts of natural selection, fitness, and adaptation and clarifies controversial issues concerning altruism, group selection, and the idea that organisms are survival machines built for the good of the genes that inhabit them. "Sober's is the answering philosophical voice, the voice of a first-rate philosopher and a knowledgeable student of contemporary evolutionary theory. His book merits (...)
    Download  
     
    Export citation  
     
    Bookmark   752 citations  
  • The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   188 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Two ways of thinking about fitness and natural selection.Mohan Matthen & André Ariew - 2002 - Journal of Philosophy 99 (2):55-83.
    How do fitness and natural selection relate to other evolutionary factors like architectural constraint, mode of reproduction, and drift? In one way of thinking, drawn from Newtonian dynamics, fitness is one force driving evolutionary change and added to other factors. In another, drawn from statistical thermodynamics, it is a statistical trend that manifests itself in natural selection histories. It is argued that the first model is incoherent, the second appropriate; a hierarchical realization model is proposed as a basis for a (...)
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • (1 other version)The Principle of Stasis: Why drift is not a Zero-Cause Law.Victor J. Luque - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 57:71-79.
    This paper analyses the structure of evolutionary theory as a quasi-Newtonian theory and the need to establish a Zero-Cause Law. Several authors have postulated that the special character of drift is because it is the default behaviour or Zero-Cause Law of evolutionary systems, where change and not stasis is the normal state of them. For these authors, drift would be a Zero-Cause Law, the default behaviour and therefore a constituent assumption impossible to change without changing the system. I defend that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • One equation to rule them all: a philosophical analysis of the Price equation.Victor J. Luque - 2017 - Biology and Philosophy 32 (1):97-125.
    This paper provides a philosophical analysis of the Price equation and its role in evolutionary theory. Traditional models in population genetics postulate simplifying assumptions in order to make the models mathematically tractable. On the contrary, the Price equation implies a very specific way of theorizing, starting with assumptions that we think are true and then deriving from them the mathematical rules of the system. I argue that the Price equation is a generalization-sketch, whose main purpose is to provide a unifying (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems.Daniel W. McShea & Robert N. Brandon - 2010 - University of Chicago Press.
    1 The Zero-Force Evolutionary Law 2 Randomness, Hierarchy, and Constraint 3 Diversity 4 Complexity 5 Evidence, Predictions, and Tests 6 Philosophical Foundations 7 Implications.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Is Genetic Drift a Force?Charles H. Pence - manuscript
    One hotly debated philosophical question in the analysis of evolutionary theory concerns whether or not evolution and the various factors which constitute it may profitably be considered as analogous to “forces” in the traditional, Newtonian sense. Several compelling arguments assert that the force picture is incoherent, due to the peculiar nature of genetic drift. I consider two of those arguments here – that drift lacks a predictable direction, and that drift is constitutive of evolutionary systems – and show that they (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Drift beyond Wright–Fisher.Hayley Clatterbuck - 2015 - Synthese 192 (11):3487-3507.
    Several recent arguments by philosophers of biology have challenged the traditional view that evolutionary factors, such as drift and selection, are genuine causes of evolutionary outcomes. In the case of drift, advocates of the statistical theory argue that drift is merely the sampling error inherent in the other stochastic processes of evolution and thus denotes a mathematical, rather than causal, feature of populations. This debate has largely centered around one particular model of drift, the Wright–Fisher model, and this has contributed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Causation, Counterfactuals, and the Third Factor.T. Maudlin - 2004 - In John Collins, Ned Hall & Laurie Paul (eds.), Causation and Counterfactuals. MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Selection and causation.Mohan Matthen & André Ariew - 2009 - Philosophy of Science 76 (2):201-224.
    We have argued elsewhere that: (A) Natural selection is not a cause of evolution. (B) A resolution-of-forces (or vector addition) model does not provide us with a proper understanding of how natural selection combines with other evolutionary influences. These propositions have come in for criticism recently, and here we clarify and defend them. We do so within the broad framework of our own “hierarchical realization model” of how evolutionary influences combine.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Selection vs. Drift: A Response to Brandon’s Reply.Roberta L. Millstein - 2005 - Biology and Philosophy 20 (1):171-175.
    I respond to Brandon's (2005) criticisms of my earlier (2002) essay. I argue that (1) biologists are inconsistent in their use of the terms 'selection' and 'drift' -- vacillating between 'process' and 'outcome' -- but that the process-oriented definitions I defend make better sense of the neutralist/selectionist debate; (2) Brandon's purported demonstration that there is no qualitative difference between drift and selection as processes begs the question against my account; and (3) biologists (e.g., Kimura) have argued for genuinely neutral variants. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (Mis)interpreting Mathematical Models: Drift as a Physical Process.Michael R. Dietrich, Robert A. Skipper Jr & Roberta L. Millstein - 2009 - Philosophy, Theory, and Practice in Biology 1 (20130604):e002.
    Recently, a number of philosophers of biology have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Are random drift and natural selection conceptually distinct?Roberta L. Millstein - 2002 - Biology and Philosophy 17 (1):33-53.
    The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by many philosophers of biology. If this claim is correct, then the neutralist/selectionist debates seem at best futile, and at worst, (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • (1 other version)The Principle of Stasis: Why drift is not a Zero-Cause Law.Victor J. Luque - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 57:71-79.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forces and Causes in Evolutionary Theory.Christopher Stephens - 2010 - Philosophy of Science 77 (5):716-727.
    The traditional view of evolutionary theory asserts that we can usefully understand natural selection, drift, mutation, migration, and the system of mating as forces that cause evolutionary change. Recently, Denis Walsh and Robert Brandon have objected to this view. Walsh argues that the traditional view faces a fatal dilemma and that the force analogy must be rejected altogether. Brandon accepts the force analogy but argues that drift, rather than the Hardy-Weinberg law, is the best candidate for a zero-force law. Here (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Making Sense of Evolution: The Conceptual Foundations of Evolutionary Theory.Massimo Pigliucci & Jonathan Kaplan - 2006 - University of Chicago Press.
    Making Sense of Evolution explores contemporary evolutionary biology, focusing on the elements of theories—selection, adaptation, and species—that are complex and open to multiple possible interpretations, many of which are incompatible with one another and with other accepted practices in the discipline. Particular experimental methods, for example, may demand one understanding of “selection,” while the application of the same concept to another area of evolutionary biology could necessitate a very different definition.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Matthen and Ariew’s Obituary for Fitness: Reports of its Death have been Greatly Exaggerated. [REVIEW]Alexander Rosenberg & Frederic Bouchard - 2005 - Biology and Philosophy 20 (2-3):343-353.
    Philosophers of biology have been absorbed by the problem of defining evolutionary fitness since Darwin made it central to biological explanation. The apparent problem is obvious. Define fitness as some biologists implicitly do, in terms of actual survival and reproduction, and the principle of natural selection turns into an empty tautology: those organisms which survive and reproduce in larger numbers, survive and reproduce in larger numbers. Accordingly, many writers have sought to provide a definition for ‘fitness’ which avoid this outcome. (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The difference between selection and drift: A reply to Millstein. [REVIEW]Robert N. Brandon - 2005 - Biology and Philosophy 20 (1):153-170.
    Millstein [Bio. Philos. 17 (2002) 33] correctly identies a serious problem with the view that natural selection and random drift are not conceptually distinct. She offers a solution to this problem purely in terms of differences between the processes of selection and drift. I show that this solution does not work, that it leaves the vast majority of real biological cases uncategorized. However, I do think there is a solution to the problem she raises, and I offer it here. My (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Reply to Alexander Rosenberg's Review of The Nature of Selection.Elliott Sober - 1986 - Behaviorism 14 (1):77-88.
    Download  
     
    Export citation  
     
    Bookmark   408 citations  
  • Manipulation and the causes of evolution.Kenneth Reisman & Patrick Forber - 2005 - Philosophy of Science 72 (5):1113-1123.
    Evolutionary processes such as natural selection and random drift are commonly regarded as causes of population-level change. We respond to a recent challenge that drift and selection are best understood as statistical trends, not causes. Our reply appeals to manipulation as a strategy for uncovering causal relationships: if you can systematically manipulate variable A to bring about a change in variable B, then A is a cause of B. We argue that selection and drift can be systematically manipulated to produce (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Newtonian forces and evolutionary biology: A problem and solution for extending the force interpretation.Joshua Filler - 2009 - Philosophy of Science 76 (5):774-783.
    There has recently been a renewed interest in the “force” interpretation of evolutionary biology. In this article, I present the general structure of the arguments for the force interpretation and identify a problem in its overly permissive conditions for being a Newtonian force. I then attempt a solution that (1) helps to illuminate the difference between forces and other types of causes and (2) makes room for random genetic drift as a force. In particular, I argue that forces are not (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Evolutionary and Newtonian Forces.Christopher Hitchcock & Joel D. Velasco - 2014 - Ergo: An Open Access Journal of Philosophy 1:39-77.
    A number of recent papers have criticized what they call the dynamical interpretation of evolutionary theory found in Elliott Sober’s The Nature of Selection. Sober argues that we can think of evolutionary theory as a theory of forces analogous to Newtonian mechanics. These critics argue that there are several important disanalogies between evolutionary and Newtonian forces: Unlike evolutionary forces, Newtonian forces can be considered in isolation, they have source laws, they compose causally in a straightforward way, and they are intermediate (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)The Principle of Drift.Robert N. Brandon - 2006 - Journal of Philosophy 103 (7):319-335.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Drift and the causes of evolution.Sahotra Sarkar - 2011 - In Phyllis McKay Illari Federica Russo (ed.), Causality in the Sciences. Oxford University Press. pp. 445.
    Download  
     
    Export citation  
     
    Bookmark   4 citations