Switch to: Citations

Add references

You must login to add references.
  1. Interfield theories.Lindley Darden & Nancy Maull - 1977 - Philosophy of Science 44 (1):43-64.
    This paper analyzes the generation and function of hitherto ignored or misrepresented interfield theories , theories which bridge two fields of science. Interfield theories are likely to be generated when two fields share an interest in explaining different aspects of the same phenomenon and when background knowledge already exists relating the two fields. The interfield theory functions to provide a solution to a characteristic type of theoretical problem: how are the relations between fields to be explained? In solving this problem (...)
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Building Cognition: The Construction of Computational Representations for Scientific Discovery.Sanjay Chandrasekharan & Nancy J. Nersessian - 2015 - Cognitive Science 39 (8):1727-1763.
    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery, are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology.Ingo Brigandt - 2010 - Erkenntnis 73 (3):295-311.
    The paper works towards an account of explanatory integration in biology, using as a case study explanations of the evolutionary origin of novelties-a problem requiring the integration of several biological fields and approaches. In contrast to the idea that fields studying lower level phenomena are always more fundamental in explanations, I argue that the particular combination of disciplines and theoretical approaches needed to address a complex biological problem and which among them is explanatorily more fundamental varies with the problem pursued. (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • The Second Essential Tension: on Tradition and Innovation in Interdisciplinary Research.Hanne Andersen - 2013 - Topoi 32 (1):3-8.
    In his analysis of “the essential tension between tradition and innovation” Thomas S. Kuhn focused on the apparent paradox that, on the one hand, normal research is a highly convergent activity based upon a settled consensus, but, on the other hand, the ultimate effect of this tradition-bound work has invariably been to change the tradition. Kuhn argued that, on the one hand, without the possibility of divergent thought, fundamental innovation would be precluded. On the other hand, without a strong emphasis (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Epistemic dependence in interdisciplinary groups.Hanne Andersen & Susann Wagenknecht - 2013 - Synthese 190 (11):1881-1898.
    In interdisciplinary research scientists have to share and integrate knowledge between people and across disciplinary boundaries. An important issue for philosophy of science is to understand how scientists who work in these kinds of environments exchange knowledge and develop new concepts and theories across diverging fields. There is a substantial literature within social epistemology that discusses the social aspects of scientific knowledge, but so far few attempts have been made to apply these resources to the analysis of interdisciplinary science. Further, (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Joint Acceptance and Scientific Change: A Case Study.Hanne Andersen - 2010 - Episteme 7 (3):248-265.
    Recently, several scholars have argued that scientists can accept scientific claims in a collective process, and that the capacity of scientific groups to form joint acceptances is linked to a functional division of labor between the group members. However, these accounts reveal little about how the cognitive content of the jointly accepted claim is formed, and how group members depend on each other in this process. In this paper, I shall therefore argue that we need to link analyses of joint (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Epistemic Landscapes and the Division of Cognitive Labor.Michael Weisberg & Ryan Muldoon - 2009 - Philosophy of Science 76 (2):225-252.
    Because of its complexity, contemporary scientific research is almost always tackled by groups of scientists, each of which works in a different part of a given research domain. We believe that understanding scientific progress thus requires understanding this division of cognitive labor. To this end, we present a novel agent-based model of scientific research in which scientists divide their labor to explore an unknown epistemic landscape. Scientists aim to climb uphill in this landscape, where elevation represents the significance of the (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Cancer and the Goals of Integration.Anya Plutynski - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences (4):466-476.
    Cancer is not one, but many diseases, and each is a product of a variety of causes acting (and interacting) at distinct temporal and spatial scales, or “levels” in the biological hierarchy. In part because of this diversity of cancer types and causes, there has been a diversity of models, hypotheses, and explanations of carcinogenesis. However, there is one model of carcinogenesis that seems to have survived the diversification of cancer types: the multi-stage model of carcinogenesis. This paper examines the (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Cancer and the goals of integration.Anya Plutynski - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):466-476.
    Cancer is not one, but many diseases, and each is a product of a variety of causes acting at distinct temporal and spatial scales, or ‘‘levels’’ in the biological hierarchy. In part because of this diversity of cancer types and causes, there has been a diversity of models, hypotheses, and explanations of carcinogenesis. However, there is one model of carcinogenesis that seems to have survived the diversification of cancer types: the multi-stage model of carcinogenesis. This paper examines the history of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Epistemic Identities in Interdisciplinary Science.Lisa M. Osbeck & Nancy J. Nersessian - 2017 - Perspectives on Science 25 (2):226-260.
    Confronting any science studies or learning sciences researcher in the 21st century is the reality of interdisciplinary science. New hybrid fields1 collaboratively build new concepts, combine models from two or more disciplines and forge inter-reliant relationships among specialists with different skill sets to solve new problems. This paper emerges from our recognition that inescapable psychological factors, including identity dynamics, must be described and analyzed in order to better understand the social and cognitive practices specific to interdisciplinary science. In analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • When integration fails: Prokaryote phylogeny and the tree of life.Maureen A. O’Malley - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):551-562.
    Much is being written these days about integration, its desirability and even its necessity when complex research problems are to be addressed. Seldom, however, do we hear much about the failure of such efforts. Because integration is an ongoing activity rather than a final achievement, and because today’s literature about integration consists mostly of manifesto statements rather than precise descriptions, an examination of unsuccessful integration could be illuminating to understand better how it works. This paper will examine the case of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Fundamental issues in systems biology.Maureen A. O'Malley & John Dupré - 2005 - Bioessays 27 (12):1270-1276.
    In the context of scientists' reflections on genomics, we examine some fundamental issues in the emerging postgenomic discipline of systems biology. Systems biology is best understood as consisting of two streams. One, which we shall call ‘pragmatic systems biology’, emphasises large‐scale molecular interactions; the other, which we shall refer to as ‘systems‐theoretic biology’, emphasises system principles. Both are committed to mathematical modelling, and both lack a clear account of what biological systems are. We discuss the underlying issues in identifying systems (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Scientific Imperialism: Difficulties in Definition, Identification, and Assessment.Uskali Mäki - 2013 - International Studies in the Philosophy of Science 27 (3):325-339.
    This article identifies and analyses issues related to defining and evaluating the so-called scientific imperialism. It discusses John Dupré's account, suggesting that it is overly conservative and does not offer a definition of scientific imperialism in not presenting it as a phenomenon of interdisciplinarity. It then discusses the recent account by Steve Clarke and Adrian Walsh, taking issue with ideas such as illegitimate occupation, counterfactual progress, and culturally significant values. A more comprehensive and refined framework of my own is then (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Coupling simulation and experiment: The bimodal strategy in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):572-584.
    The importation of computational methods into biology is generating novel methodological strategies for managing complexity which philosophers are only just starting to explore and elaborate. This paper aims to enrich our understanding of methodology in integrative systems biology, which is developing novel epistemic and cognitive strategies for managing complex problem-solving tasks. We illustrate this through developing a case study of a bimodal researcher from our ethnographic investigation of two systems biology research labs. The researcher constructed models of metabolic and cell-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Building Simulations from the Ground Up: Modeling and Theory in Systems Biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Philosophy of Science 80 (4):533-556.
    In this article, we provide a case study examining how integrative systems biologists build simulation models in the absence of a theoretical base. Lacking theoretical starting points, integrative systems biology researchers rely cognitively on the model-building process to disentangle and understand complex biochemical systems. They build simulations from the ground up in a nest-like fashion, by pulling together information and techniques from a variety of possible sources and experimenting with different structures in order to discover a stable, robust result. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Dimensions of integration in interdisciplinary explanations of the origin of evolutionary novelty.Alan C. Love & Gary L. Lugar - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):537-550.
    Many philosophers of biology have embraced a version of pluralism in response to the failure of theory reduction but overlook how concepts, methods, and explanatory resources are in fact coordinated, such as in interdisciplinary research where the aim is to integrate different strands into an articulated whole. This is observable for the origin of evolutionary novelty—a complex problem that requires a synthesis of intellectual resources from different fields to arrive at robust answers to multiple allied questions. It is an apt (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Integrating data to acquire new knowledge: Three modes of integration in plant science.Sabina Leonelli - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):503-514.
    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O’Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Models as products of interdisciplinary exchange: Evidence from evolutionary game theory.Till Grüne-Yanoff - 2011 - Studies in History and Philosophy of Science Part A 42 (2):386-397.
    The development of evolutionary game theory is closely linked with two interdisciplinary exchanges: the import of game theory into biology, and the import of biologists’ version of game theory into economics. This paper traces the history of these two import episodes. In each case the investigation covers what exactly was imported, what the motives for the import were, how the imported elements were put to use, and how they related to existing practices in the respective disciplines. Two conclusions emerged from (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Economic Theory and Cognitive Science: Microexplanation.Don Ross - 2007 - Bradford.
    In this study, Don Ross explores the relationship of economics to other branches of behavioral science, asking, in the course of his analysis, under what interpretation economics is a sound empirical science. The book explores the relationships between economic theory and the theoretical foundations of related disciplines that are relevant to the day-to-day work of economics -- the cognitive and behavioral sciences. It asks whether the increasingly sophisticated techniques of microeconomic analysis have revealed any deep empirical regularities -- whether technical (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Biological Complexity and Integrative Pluralism.Sandra D. Mitchell - 2003 - Cambridge University Press.
    This fine collection of essays by a leading philosopher of science presents a defence of integrative pluralism as the best description for the complexity of scientific inquiry today. The tendency of some scientists to unify science by reducing all theories to a few fundamental laws of the most basic particles that populate our universe is ill-suited to the biological sciences, which study multi-component, multi-level, evolved complex systems. This integrative pluralism is the most efficient way to understand the different and complex (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Conceptualizing Evolutionary Novelty: Moving Beyond Definitional Debates.Ingo Brigandt & Alan C. Love - 2012 - Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 318:417-427.
    According to many biologists, explaining the evolution of morphological novelty and behavioral innovation are central endeavors in contemporary evolutionary biology. These endeavors are inherently multidisciplinary but also have involved a high degree of controversy. One key source of controversy is the definitional diversity associated with the concept of evolutionary novelty, which can lead to contradictory claims (a novel trait according to one definition is not a novel trait according to another). We argue that this diversity should be interpreted in light (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Towards philosophical foundations of Systems Biology: introduction.Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff - 2007 - In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Elsevier.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Data without models merging with models without data.Ulrich Krohs & Werner Callebaut - 2007 - In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Elsevier. pp. 181--213.
    Systems biology is largely tributary to genomics and other “omic” disciplines that generate vast amounts of structural data. “Omics”, however, lack a theoretical framework that would allow using these data sets as such (rather than just tiny bits that are extracted by advanced data-mining techniques) to build explanatory models that help understand physiological processes. Systems biology provides such a framework by adding a dynamic dimension to merely structural “omics”. It makes use of bottom-up and top-down models. The former are based (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations