Switch to: Citations

Add references

You must login to add references.
  1. Computation without representation.Gualtiero Piccinini - 2004 - Philosophical Studies 137 (2):205-241.
    The received view is that computational states are individuated at least in part by their semantic properties. I offer an alternative, according to which computational states are individuated by their functional properties. Functional properties are specified by a mechanistic explanation without appealing to any semantic properties. The primary purpose of this paper is to formulate the alternative view of computational individuation, point out that it supports a robust notion of computational explanation, and defend it on the grounds of how computational (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • The Nature of Physical Computation.Oron Shagrir - 2021 - Oxford University Press.
    What does it mean to say that an object or system computes? What is it about laptops, smartphones, and nervous systems that they are considered to compute, and why does it seldom occur to us to describe stomachs, hurricanes, rocks, or chairs that way? Though computing systems are everywhere today, it is very difficult to answer these questions. The book aims to shed light on the subject by arguing for the semantic view of computation, which states that computingsystems are always (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The physicality of representation.Corey J. Maley - 2021 - Synthese 199 (5-6):14725-14750.
    Representation is typically taken to be importantly separate from its physical implementation. This is exemplified in Marr’s three-level framework, widely cited and often adopted in neuroscience. However, the separation between representation and physical implementation is not a necessary feature of information-processing systems. In particular, when it comes to analog computational systems, Marr’s representational/algorithmic level and implementational level collapse into a single level. Insofar as analog computation is a better way of understanding neural computation than other notions, Marr’s three-level framework must (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Analogue Computation and Representation.Corey J. Maley - 2023 - British Journal for the Philosophy of Science 74 (3):739-769.
    Relative to digital computation, analogue computation has been neglected in the philosophical literature. To the extent that attention has been paid to analogue computation, it has been misunderstood. The received view—that analogue computation has to do essentially with continuity—is simply wrong, as shown by careful attention to historical examples of discontinuous, discrete analogue computers. Instead of the received view, I develop an account of analogue computation in terms of a particular type of analogue representation that allows for discontinuity. This account (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computing Mechanisms Without Proper Functions.Joe Dewhurst - 2018 - Minds and Machines 28 (3):569-588.
    The aim of this paper is to begin developing a version of Gualtiero Piccinini’s mechanistic account of computation that does not need to appeal to any notion of proper (or teleological) functions. The motivation for doing so is a general concern about the role played by proper functions in Piccinini’s account, which will be evaluated in the first part of the paper. I will then propose a potential alternative approach, where computing mechanisms are understood in terms of Carl Craver’s perspectival (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Representation and Reality.H. Putnam - 1988 - Tijdschrift Voor Filosofie 52 (1):168-168.
    Download  
     
    Export citation  
     
    Bookmark   276 citations  
  • Computation and cognitive science: Introduction to issue.Mark Sprevak - 2010 - Studies in History and Philosophy of Science Part A 41 (3):223-226.
    Nowadays, it has become almost a matter of course to say that the human mind is like a computer. Folks in all walks of life talk of ‘programming’ themselves, ‘multitasking’, running different ‘operating systems’, and sometimes of ‘crashing’ and being ‘rebooted’. Few who have used computers have not been touched by the appeal of the..
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • What Might Cognition Be, If Not Computation?Tim Van Gelder - 1995 - Journal of Philosophy 92 (7):345 - 381.
    Download  
     
    Export citation  
     
    Bookmark   305 citations  
  • Computational models: a modest role for content.Frances Egan - 2010 - Studies in History and Philosophy of Science Part A 41 (3):253-259.
    The computational theory of mind construes the mind as an information-processor and cognitive capacities as essentially representational capacities. Proponents of the view claim a central role for representational content in computational models of these capacities. In this paper I argue that the standard view of the role of representational content in computational models is mistaken; I argue that representational content is to be understood as a gloss on the computational characterization of a cognitive process.Keywords: Computation; Representational content; Cognitive capacities; Explanation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Analog and digital, continuous and discrete.Corey J. Maley - 2011 - Philosophical Studies 155 (1):117-131.
    Representation is central to contemporary theorizing about the mind/brain. But the nature of representation--both in the mind/brain and more generally--is a source of ongoing controversy. One way of categorizing representational types is to distinguish between the analog and the digital: the received view is that analog representations vary smoothly, while digital representations vary in a step-wise manner. I argue that this characterization is inadequate to account for the ways in which representation is used in cognitive science; in its place, I (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Computational modeling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind?Gualtiero Piccinini - 2007 - Australasian Journal of Philosophy 85 (1):93 – 115.
    According to pancomputationalism, everything is a computing system. In this paper, I distinguish between different varieties of pancomputationalism. I find that although some varieties are more plausible than others, only the strongest variety is relevant to the philosophy of mind, but only the most trivial varieties are true. As a side effect of this exercise, I offer a clarified distinction between computational modelling and computational explanation.<br><br>.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Finite combinatory processes—formulation.Emil L. Post - 1936 - Journal of Symbolic Logic 1 (3):103-105.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)Functionalism, computationalism, and mental contents.Gualtiero Piccinini - 2004 - Canadian Journal of Philosophy 34 (3):375-410.
    Some philosophers have conflated functionalism and computationalism. I reconstruct how this came about and uncover two assumptions that made the conflation possible. They are the assumptions that (i) psychological functional analyses are computational descriptions and (ii) everything may be described as performing computations. I argue that, if we want to improve our understanding of both the metaphysics of mental states and the functional relations between them, we should reject these assumptions. # 2004 Elsevier Ltd. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Multiple realizations.Lawrence A. Shapiro - 2000 - Journal of Philosophy 97 (12):635-654.
    Download  
     
    Export citation  
     
    Bookmark   183 citations  
  • Functional analysis.Robert E. Cummins - 1975 - Journal of Philosophy 72 (November):741-64.
    Download  
     
    Export citation  
     
    Bookmark   869 citations  
  • (1 other version)The mind-body problem.Jerry Fodor - 1981 - Scientific American 244 (1):114-25.
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   563 citations  
  • (1 other version)Rethinking Mechanistic Explanation.Stuart Glennan - 2002 - Philosophy of Science 69 (S3):S342-S353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   421 citations  
  • Content, computation and externalism.Oron Shagrir - 2001 - Mind 110 (438):369-400.
    The paper presents an extended argument for the claim that mental content impacts the computational individuation of a cognitive system (section 2). The argument starts with the observation that a cognitive system may simultaneously implement a variety of different syntactic structures, but that the computational identity of a cognitive system is given by only one of these implemented syntactic structures. It is then asked what are the features that determine which of implemented syntactic structures is the computational structure of the (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Evaluating the evidence for multiple realization.Thomas W. Polger - 2009 - Synthese 167 (3):457 - 472.
    Consider what the brain-state theorist has to do to make good his claims. He has to specify a physical–chemical state such that any organism (not just a mammal) is in pain if and only if (a) it possesses a brain of suitable physical–chemical structure; and (b) its brain is in that physical–chemical state. This means that the physical–chemical state in question must be a possible state of a mammalian brain, a reptilian brain, a mollusc’s brain (octopuses are mollusca, and certainly (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)Rethinking mechanistic explanation.Stuart Glennan - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S342-353.
    Philosophers of science typically associate the causal-mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon's account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex-systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   400 citations  
  • Neuroscience and multiple realization: a reply to Bechtel and Mundale.Ken Aizawa - 2009 - Synthese 167 (3):493-510.
    One trend in recent work on topic of the multiple realization of psychological properties has been an emphasis on greater sensitivity to actual science and greater clarity regarding the metaphysics of realization and multiple realization. One contribution to this trend is Bechtel and Mundale’s examination of the implications of brain mapping for multiple realization. Where Bechtel and Mundale argue that studies of brain mapping undermine claims about the multiple realization, this paper challenges that argument.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The metaphysics of realization, multiple realizability, and the special sciences.Carl Gillett - 2003 - Journal of Philosophy 100 (11):591-603.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Rethinking Mechanistic Explanation.Lindley Darden - 2002 - Philosophy of Science 69 (S3):342-353.
    Philosophers of science typically associate the causal‐mechanical view of scientific explanation with the work of Railton and Salmon. In this paper I shall argue that the defects of this view arise from an inadequate analysis of the concept of mechanism. I contrast Salmon’s account of mechanisms in terms of the causal nexus with my own account of mechanisms, in which mechanisms are viewed as complex systems. After describing these two concepts of mechanism, I show how the complex‐systems approach avoids certain (...)
    Download  
     
    Export citation  
     
    Bookmark   215 citations  
  • Fun and games in fantasyland.Daniel Dennett - 2008 - Mind and Language 23 (1):25–31.
    commentary on Fodor, “Against Darwinism.”.
    Download  
     
    Export citation  
     
    Bookmark   16 citations