Switch to: References

Citations of:

Content, computation and externalism

Mind 110 (438):369-400 (2001)

Add citations

You must login to add citations.
  1. On computational explanations.Anna-Mari Rusanen & Otto Lappi - 2016 - Synthese 193 (12):3931-3949.
    Computational explanations focus on information processing required in specific cognitive capacities, such as perception, reasoning or decision-making. These explanations specify the nature of the information processing task, what information needs to be represented, and why it should be operated on in a particular manner. In this article, the focus is on three questions concerning the nature of computational explanations: What type of explanations they are, in what sense computational explanations are explanatory and to what extent they involve a special, “independent” (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Objective Computation Versus Subjective Computation.Nir Fresco - 2015 - Erkenntnis 80 (5):1031-1053.
    The question ‘What is computation?’ might seem a trivial one to many, but this is far from being in consensus in philosophy of mind, cognitive science and even in physics. The lack of consensus leads to some interesting, yet contentious, claims, such as that cognition or even the universe is computational. Some have argued, though, that computation is a subjective phenomenon: whether or not a physical system is computational, and if so, which computation it performs, is entirely a matter of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Semantic externalism and the mechanics of thought.Carrie Figdor - 2009 - Minds and Machines 19 (1):1-24.
    I review a widely accepted argument to the conclusion that the contents of our beliefs, desires and other mental states cannot be causally efficacious in a classical computational model of the mind. I reply that this argument rests essentially on an assumption about the nature of neural structure that we have no good scientific reason to accept. I conclude that computationalism is compatible with wide semantic causal efficacy, and suggest how the computational model might be modified to accommodate this possibility.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Explaining computation without semantics: Keeping it simple.Nir Fresco - 2010 - Minds and Machines 20 (2):165-181.
    This paper deals with the question: how is computation best individuated? -/- 1. The semantic view of computation: computation is best individuated by its semantic properties. 2. The causal view of computation: computation is best individuated by its causal properties. 3. The functional view of computation: computation is best individuated by its functional properties. -/- Some scientific theories explain the capacities of brains by appealing to computations that they supposedly perform. The reason for that is usually that computation is individuated (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Computational explanation in neuroscience.Gualtiero Piccinini - 2006 - Synthese 153 (3):343-353.
    According to some philosophers, computational explanation is proprietary
    to psychology—it does not belong in neuroscience. But neuroscientists routinely offer computational explanations of cognitive phenomena. In fact, computational explanation was initially imported from computability theory into the science of mind by neuroscientists, who justified this move on neurophysiological grounds. Establishing the legitimacy and importance of computational explanation in neuroscience is one thing; shedding light on it is another. I raise some philosophical questions pertaining to computational explanation and outline some promising answers that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The computational theory of mind.Steven Horst - 2005 - Stanford Encyclopedia of Philosophy.
    Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay is concerned with a particular philosophical view that holds that the mind literally is a digital computer (in a specific sense of “computer” to be developed), and that thought literally is a kind of computation. This view—which will be called the “Computational Theory of Mind” (CTM)—is thus to be distinguished from other and broader attempts to connect the mind with computation, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Why nothing mental is just in the head.Justin C. Fisher - 2007 - Noûs 41 (2):318-334.
    Mental internalists hold that an individuals mental features at a given time supervene upon what is in that individuals head at that time. While many people reject mental internalism about content and justification, mental internalism is commonly accepted regarding such other mental features as rationality, emotion-types, propositional-attitude-types, moral character, and phenomenology. I construct a counter-example to mental internalism regarding all these features. My counter-example involves two creatures: a human and an alien from Pulse World. These creatures environments, behavioral dispositions and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Formats of Cognitive Representation: A Computational Account.Dimitri Coelho Mollo & Alfredo Vernazzani - 2023 - Philosophy of Science (3):682-701.
    Cognitive representations are typically analysed in terms of content, vehicle and format. While current work on formats appeals to intuitions about external representations, such as words and maps, in this paper we develop a computational view of formats that does not rely on intuitions. In our view, formats are individuated by the computational profiles of vehicles, i.e., the set of constraints that fix the computational transformations vehicles can undergo. The resulting picture is strongly pluralistic, it makes space for a variety (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Computing in the nick of time.J. Brendan Ritchie & Colin Klein - 2023 - Ratio 36 (3):169-179.
    The medium‐independence of computational descriptions has shaped common conceptions of computational explanation. So long as our goal is to explain how a system successfully carries out its computations, then we only need to describe the abstract series of operations that achieve the desired input–output mapping, however they may be implemented. It is argued that this abstract conception of computational explanation cannot be applied to so‐called real‐time computing systems, in which meeting temporal deadlines imposed by the systems with which a device (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Troubles with mathematical contents.Marco Facchin - forthcoming - Philosophical Psychology.
    To account for the explanatory role representations play in cognitive science, Egan’s deflationary account introduces a distinction between cognitive and mathematical contents. According to that account, only the latter are genuine explanatory posits of cognitive-scientific theories, as they represent the arguments and values cognitive devices need to represent to compute. Here, I argue that the deflationary account suffers from two important problems, whose roots trace back to the introduction of mathematical contents. First, I will argue that mathematical contents do not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structuralism, indiscernibility, and physical computation.F. T. Doherty & J. Dewhurst - 2022 - Synthese 200 (3):1-26.
    Structuralism about mathematical objects and structuralist accounts of physical computation both face indeterminacy objections. For the former, the problem arises for cases such as the complex roots i and \, for which a automorphism can be defined, thus establishing the structural identity of these importantly distinct mathematical objects. In the case of the latter, the problem arises for logical duals such as AND and OR, which have invertible structural profiles :369–400, 2001). This makes their physical implementations indeterminate, in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The indeterminacy of computation.Nir Fresco, B. Jack Copeland & Marty J. Wolf - 2021 - Synthese 199 (5-6):12753-12775.
    Do the dynamics of a physical system determine what function the system computes? Except in special cases, the answer is no: it is often indeterminate what function a given physical system computes. Accordingly, care should be taken when the question ‘What does a particular neuronal system do?’ is answered by hypothesising that the system computes a particular function. The phenomenon of the indeterminacy of computation has important implications for the development of computational explanations of biological systems. Additionally, the phenomenon lends (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computational Individuation.Fiona T. Doherty - manuscript
    I show that the indeterminacy problem for computational structuralists is in fact far more problematic than even the harshest critic of structuralism has realised; it is not a bullet which can be bitten by structuralists as previously thought. Roughly, this is because the structural indeterminacy of logic-gates such as AND/OR is caused by the structural identity of the binary computational digits 0/1 themselves. I provide a proof that pure computational structuralism is untenable because structural indeterminacy entails absurd consequences - namely, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are Generative Models Structural Representations?Marco Facchin - 2021 - Minds and Machines 31 (2):277-303.
    Philosophers interested in the theoretical consequences of predictive processing often assume that predictive processing is an inferentialist and representationalist theory of cognition. More specifically, they assume that predictive processing revolves around approximated Bayesian inferences drawn by inverting a generative model. Generative models, in turn, are said to be structural representations: representational vehicles that represent their targets by being structurally similar to them. Here, I challenge this assumption, claiming that, at present, it lacks an adequate justification. I examine the only argument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The methodological role of mechanistic-computational models in cognitive science.Jens Harbecke - 2020 - Synthese 199 (Suppl 1):19-41.
    This paper discusses the relevance of models for cognitive science that integrate mechanistic and computational aspects. Its main hypothesis is that a model of a cognitive system is satisfactory and explanatory to the extent that it bridges phenomena at multiple mechanistic levels, such that at least several of these mechanistic levels are shown to implement computational processes. The relevant parts of the computation must be mapped onto distinguishable entities and activities of the mechanism. The ideal is contrasted with two other (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The role of the environment in computational explanations.Jens Harbecke & Oron Shagrir - 2019 - European Journal for Philosophy of Science 9 (3):1-19.
    The mechanistic view of computation contends that computational explanations are mechanistic explanations. Mechanists, however, disagree about the precise role that the environment – or the so-called “contextual level” – plays for computational explanations. We advance here two claims: Contextual factors essentially determine the computational identity of a computing system ; this means that specifying the “intrinsic” mechanism is not sufficient to fix the computational identity of the system. It is not necessary to specify the causal-mechanistic interaction between the system and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How to think about mental content.Frances Egan - 2014 - Philosophical Studies 170 (1):115-135.
    Introduction: representationalismMost theorists of cognition endorse some version of representationalism, which I will understand as the view that the human mind is an information-using system, and that human cognitive capacities are representational capacities. Of course, notions such as ‘representation’ and ‘information-using’ are terms of art that require explication. As a first pass, representations are “mediating states of an intelligent system that carry information” (Markman and Dietrich 2001, p. 471). They have two important features: (1) they are physically realized, and so (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Triviality Arguments Reconsidered.Paul Schweizer - 2019 - Minds and Machines 29 (2):287-308.
    Opponents of the computational theory of mind have held that the theory is devoid of explanatory content, since whatever computational procedures are said to account for our cognitive attributes will also be realized by a host of other ‘deviant’ physical systems, such as buckets of water and possibly even stones. Such ‘triviality’ claims rely on a simple mapping account of physical implementation. Hence defenders of CTM traditionally attempt to block the trivialization critique by advocating additional constraints on the implementation relation. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Commitment to LOT.Víctor M. Verdejo - 2016 - Dialogue 55 (2):313-341.
    Je soutiens qu’accepter les explications réalistes intentionnelles du comportement cognitif conduit inévitablement à endosser l’hypothèse du langage de la pensée, et que cette position théorique est, par conséquent, largement répandue chez les philosophes de l’esprit. Au cours de la discussion, je propose un exposé succinct et précis de cette hypothèse et j’analyse une série d’exemples représentatifs de l’argumentation pro-LOT. Après avoir examiné deux cas de résistance à ce type de raisonnement, je conclus en montrant que le soutien accordé à la (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2019 - British Journal for the Philosophy of Science:axz005.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas M. Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics. Cham: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How to Explain Miscomputation.Chris Tucker - 2018 - Philosophers' Imprint 18:1-17.
    Just as theory of representation is deficient if it can’t explain how misrepresentation is possible, a theory of computation is deficient if it can’t explain how miscomputation is possible. Nonetheless, philosophers have generally ignored miscomputation. My primary goal in this paper is to clarify both what miscomputation is and how to adequately explain it. Miscomputation is a special kind of malfunction: a system miscomputes when it computes in a way that it shouldn’t. To explain miscomputation, you must provide accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The Cognitive Basis of Computation: Putting Computation in Its Place.Daniel D. Hutto, Erik Myin, Anco Peeters & Farid Zahnoun - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Routledge. pp. 272-282.
    The mainstream view in cognitive science is that computation lies at the basis of and explains cognition. Our analysis reveals that there is no compelling evidence or argument for thinking that brains compute. It makes the case for inverting the explanatory order proposed by the computational basis of cognition thesis. We give reasons to reverse the polarity of standard thinking on this topic, and ask how it is possible that computation, natural and artificial, might be based on cognition and not (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Representation in Cognitive Science.Nicholas Shea - 2018 - Oxford University Press.
    How can we think about things in the outside world? There is still no widely accepted theory of how mental representations get their meaning. In light of pioneering research, Nicholas Shea develops a naturalistic account of the nature of mental representation with a firm focus on the subpersonal representations that pervade the cognitive sciences.
    Download  
     
    Export citation  
     
    Bookmark   130 citations  
  • Review of Physical Computation: A Mechanistic Account by Gualtiero Piccinini - Gualtiero Piccinini, Physical Computation: A Mechanistic Account. Oxford: Oxford University Press (2015), 313 pp., $65.00 (cloth). [REVIEW]Oron Shagrir - 2017 - Philosophy of Science 84 (3):604-612.
    Download  
     
    Export citation  
     
    Bookmark  
  • The False Dichotomy between Causal Realization and Semantic Computation.Marcin Miłkowski - 2017 - Hybris. Internetowy Magazyn Filozoficzny 38:1-21.
    In this paper, I show how semantic factors constrain the understanding of the computational phenomena to be explained so that they help build better mechanistic models. In particular, understanding what cognitive systems may refer to is important in building better models of cognitive processes. For that purpose, a recent study of some phenomena in rats that are capable of ‘entertaining’ future paths (Pfeiffer and Foster 2013) is analyzed. The case shows that the mechanistic account of physical computation may be complemented (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Can Informational Theories Account for Metarepresentation?Miguel Ángel Sebastián & Marc Artiga - 2020 - Topoi 39 (1):81-94.
    In this essay we discuss recent attempts to analyse the notion of representation, as it is employed in cognitive science, in purely informational terms. In particular, we argue that recent informational theories cannot accommodate the existence of metarepresentations. Since metarepresentations play a central role in the explanation of many cognitive abilities, this is a serious shortcoming of these proposals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computation, individuation, and the received view on representation.Mark Sprevak - 2010 - Studies in History and Philosophy of Science Part A 41 (3):260-270.
    The ‘received view’ about computation is that all computations must involve representational content. Egan and Piccinini argue against the received view. In this paper, I focus on Egan’s arguments, claiming that they fall short of establishing that computations do not involve representational content. I provide positive arguments explaining why computation has to involve representational content, and how that representational content may be of any type. I also argue that there is no need for computational psychology to be individualistic. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The instructional information processing account of digital computation.Nir Fresco & Marty J. Wolf - 2014 - Synthese 191 (7):1469-1492.
    What is nontrivial digital computation? It is the processing of discrete data through discrete state transitions in accordance with finite instructional information. The motivation for our account is that many previous attempts to answer this question are inadequate, and also that this account accords with the common intuition that digital computation is a type of information processing. We use the notion of reachability in a graph to defend this characterization in memory-based systems and underscore the importance of instructional information for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computation, external factors, and cognitive explanations.Amir Horowitz - 2007 - Philosophical Psychology 20 (1):65-80.
    Computational properties, it is standardly assumed, are to be sharply distinguished from semantic properties. Specifically, while it is standardly assumed that the semantic properties of a cognitive system are externally or non-individualistically individuated, computational properties are supposed to be individualistic and internal. Yet some philosophers (e.g., Tyler Burge) argue that content impacts computation, and further, that environmental factors impact computation. Oron Shagrir has recently argued for these theses in a novel way, and gave them novel interpretations. In this paper I (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Is the mind in the brain in contemporary computational neuroscience?Meir Hemmo & Orly Shenker - 2023 - Studies in History and Philosophy of Science Part A 100 (C):64-80.
    According to contemporary computational neuroscience the mental is associated with computations implemented in the brain. We analyze in physical terms based on recent results in the foundations of statistical mechanics two well-known (independent) problems that arise for this approach: the problem of multiple-computations and the problem of multiple-realization. We show that within the computational theory of the mind the two problems are insoluble by the physics of the brain. We further show that attempts to solve the problems by the interactions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational indeterminacy and explanations in cognitive science.Philippos Papayannopoulos, Nir Fresco & Oron Shagrir - 2022 - Biology and Philosophy 37 (6):1-30.
    Computational physical systems may exhibit indeterminacy of computation (IC). Their identified physical dynamics may not suffice to select a unique computational profile. We consider this phenomenon from the point of view of cognitive science and examine how computational profiles of cognitive systems are identified and justified in practice, in the light of IC. To that end, we look at the literature on the underdetermination of theory by evidence and argue that the same devices that can be successfully employed to confirm (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The determinacy of computation.André Curtis-Trudel - 2022 - Synthese 200 (1):1-28.
    A skeptical worry known as ‘the indeterminacy of computation’ animates much recent philosophical reflection on the computational identity of physical systems. On the one hand, computational explanation seems to require that physical computing systems fall under a single, unique computational description at a time. On the other, if a physical system falls under any computational description, it seems to fall under many simultaneously. Absent some principled reason to take just one of these descriptions in particular as relevant for computational explanation, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why go for a computation-based approach to cognitive representation.Dimitri Coelho Mollo - 2021 - Synthese 199 (3-4):6875-6895.
    An influential view in cognitive science is that computation in cognitive systems is semantic, conceptually depending on representation: to compute is to manipulate representations. I argue that accepting the non-semantic teleomechanistic view of computation lays the ground for a promising alternative strategy, in which computation helps to explain and naturalise representation, rather than the other way around. I show that this computation-based approach to representation presents six decisive advantages over the semantic view. I claim that it can improve the two (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Mind as Neural Software? Understanding Functionalism, Computationalism, and Computational Functionalism.Gualtiero Piccinini - 2010 - Philosophy and Phenomenological Research 81 (2):269-311.
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism, recruit recent philosophical work on mechanisms and computation to shed light on them, and (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)1. Marr on Computational-Level Theories Marr on Computational-Level Theories (pp. 477-500).Oron Shagrir, John D. Norton, Holger Andreas, Jouni-Matti Kuukkanen, Aris Spanos, Eckhart Arnold, Elliott Sober, Peter Gildenhuys & Adela Helena Roszkowski - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why. This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: that the Why element plays an explanatory role in computational-level theories, that its goal is to explain why the computed function is appropriate for a given visual task, and that the explanation consists in showing that the functional relations between the representing cells are similar to (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Naturalising Representational Content.Nicholas Shea - 2013 - Philosophy Compass 8 (5):496-509.
    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Computation without representation.Gualtiero Piccinini - 2008 - Philosophical Studies 137 (2):205-241.
    The received view is that computational states are individuated at least in part by their semantic properties. I offer an alternative, according to which computational states are individuated by their functional properties. Functional properties are specified by a mechanistic explanation without appealing to any semantic properties. The primary purpose of this paper is to formulate the alternative view of computational individuation, point out that it supports a robust notion of computational explanation, and defend it on the grounds of how computational (...)
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Medium Independence and the Failure of the Mechanistic Account of Computation.Corey J. Maley - 2023 - Ergo: An Open Access Journal of Philosophy 10.
    Current orthodoxy takes representation to be essential to computation. However, a philosophical account of computation that does not appeal to representation would be useful, given the difficulties involved in successfully theorizing representation. Piccinini's recent mechanistic account of computation proposes to do just that: it couches computation in terms of what certain mechanisms do without requiring the manipulation or processing of representations whatsoever (Piccinini 2015). Most crucially, mechanisms must process medium-independent vehicles. There are two ways to understand what "medium-independence" means on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mechanistic Computational Individuation without Biting the Bullet.Nir Fresco & Marcin Miłkowski - 2021 - British Journal for the Philosophy of Science 72 (2):431-438.
    Is the mathematical function being computed by a given physical system determined by the system’s dynamics? This question is at the heart of the indeterminacy of computation phenomenon (Fresco et al. [unpublished]). A paradigmatic example is a conventional electrical AND-gate that is often said to compute conjunction, but it can just as well be used to compute disjunction. Despite the pervasiveness of this phenomenon in physical computational systems, it has been discussed in the philosophical literature only indirectly, mostly with reference (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why Functionalism Is a Form of ‘Token-Dualism’.Meir Hemmo & Orly R. Shenker - 2022 - In Meir Hemmo, Stavros Ioannidis, Orly Shenker & Gal Vishne (eds.), Levels of Reality in Science and Philosophy: Re-Examining the Multi-Level Structure of Reality. Springer.
    We present a novel reductive theory of type-identity physicalism, which is inspired by the foundations of statistical mechanics as a general theory of natural kinds. We show that all the claims mounted against type-identity physicalism in the literature don’t apply to Flat Physicalism, and moreover that this reductive theory solves many of the problems faced by the various non-reductive approaches including functionalism. In particular, we show that Flat Physicalism can account for the appearance of multiple realizability in the special sciences, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Functional individuation, mechanistic implementation: the proper way of seeing the mechanistic view of concrete computation.Dimitri Coelho Mollo - 2017 - Synthese 195 (8):3477-3497.
    I examine a major objection to the mechanistic view of concrete computation, stemming from an apparent tension between the abstract nature of computational explanation and the tenets of the mechanistic framework: while computational explanation is medium-independent, the mechanistic framework insists on the importance of providing some degree of structural detail about the systems target of the explanation. I show that a common reply to the objection, i.e. that mechanistic explanation of computational systems involves only weak structural constraints, is not enough (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On Two Different Kinds of Computational Indeterminacy.Philippos Papayannopoulos, Nir Fresco & Oron Shagrir - 2022 - The Monist 105 (2):229-246.
    It is often indeterminate what function a given computational system computes. This phenomenon has been referred to as “computational indeterminacy” or “multiplicity of computations.” In this paper, we argue that what has typically been considered and referred to as the challenge of computational indeterminacy in fact subsumes two distinct phenomena, which are typically bundled together and should be teased apart. One kind of indeterminacy concerns a functional characterization of the system’s relevant behavior. Another kind concerns the manner in which the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Long-arm functional individuation of computation.Nir Fresco - 2021 - Synthese 199 (5-6):13993-14016.
    A single physical process may often be described equally well as computing several different mathematical functions—none of which is explanatorily privileged. How, then, should the computational identity of a physical system be determined? Some computational mechanists hold that computation is individuated only by either narrow physical or functional properties. Even if some individuative role is attributed to environmental factors, it is rather limited. The computational semanticist holds that computation is individuated, at least in part, by semantic properties. She claims that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Implementation as Resemblance.André Curtis-Trudel - 2021 - Philosophy of Science 88 (5):1021-1032.
    This article advertises a new account of computational implementation. According to the resemblance account, implementation is a matter of resembling a computational architecture. The resemblance account departs from previous theories by denying that computational architectures are exhausted by their formal, mathematical features. Instead, they are taken to be permeated with causality, spatiotemporality, and other nonmathematical features. I argue that this approach comports well with computer scientific practice and offers a novel response to so-called triviality arguments.
    Download  
     
    Export citation  
     
    Bookmark   5 citations