Switch to: Citations

Add references

You must login to add references.
  1. The philosophy of quantum mechanics.Max Jammer - 1974 - New York,: Wiley. Edited by Max Jammer.
    Download  
     
    Export citation  
     
    Bookmark   282 citations  
  • The principles of quantum mechanics.Paul Dirac - 1930 - Oxford,: Clarendon Press.
    THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Niels Bohr's philosophy of physics.Dugald Murdoch - 1987 - New York: Cambridge University Press.
    Murdoch describes the historical background of the physics from which Bohr's ideas grew; he traces the origins of his idea of complementarity and discusses its meaning and significance. Special emphasis is placed on the contrasting views of Einstein, and the great debate between Bohr and Einstein is thoroughly examined. Bohr's philosophy is revealed as being much more subtle, and more interesting than is generally acknowledged.
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Some realizable joint measurements of complementary observables.Paul Busch - 1987 - Foundations of Physics 17 (9):905-937.
    Noncommuting quantum observables, if considered asunsharp observables, are simultaneously measurable. This fact is exemplified for complementary observables in two-dimensional state spaces. Two proposals of experimentally feasible joint measurements are presented for pairs of photon or neutron polarization observables and for path and interference observables in a photon split-beam experiment. A recent experiment proposed and performed by Mittelstaedt, Prieur, and Schieder in Cologne is interpreted as a partial version of the latter example.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Probability concepts in quantum mechanics.Patrick Suppes - 1961 - Philosophy of Science 28 (4):378-389.
    The fundamental problem considered is that of the existence of a joint probability distribution for momentum and position at a given instant. The philosophical interest of this problem is that for the potential energy functions (or Hamiltonians) corresponding to many simple experimental situations, the joint "distribution" derived by the methods of Wigner and Moyal is not a genuine probability distribution at all. The implications of these results for the interpretation of the Heisenberg uncertainty principle are analyzed. The final section consists (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Unsharp particle-wave duality in a photon split-beam experiment.P. Mittelstaedt, A. Prieur & R. Schieder - 1987 - Foundations of Physics 17 (9):891-903.
    In a quantum mechanical two-slit experiment one can observe a single photon simultaneously as particle (measuring the path) and as wave (measuring the interference pattern) if the path and the interference pattern are measured in the sense of unsharp observables. These theoretical predictions are confirmed experimentally by a photon split-beam experiment using a modified Mach—Zehnder interferometer.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Nonideal quantum measurements.Hans Martens & Willem M. de Muynck - 1990 - Foundations of Physics 20 (3):255-281.
    A partial ordering in the class of observables (∼ positive operator-valued measures, introduced by Davies and by Ludwig) is explored. The ordering is interpreted as a form of nonideality, and it allows one to compare ideal and nonideal versions of the same observable. Optimality is defined as maximality in the sense of the ordering. The framework gives a generalization of the usual (implicit) definition of self-adjoint operators as optimal observables (von Neumann), but it can, in contrast to this latter definition, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The transitions among classical mechanics, quantum mechanics, and stochastic quantum mechanics.Franklin E. Schroeck - 1982 - Foundations of Physics 12 (9):825-841.
    Various formalisms for recasting quantum mechanics in the framework of classical mechanics on phase space are reviewed and compared. Recent results in stochastic quantum mechanics are shown to avoid the difficulties encountered by the earlier approach of Wigner, as well as to avoid the well-known incompatibilities of relativity and ordinary quantum theory. Specific mappings among the various formalisms are given.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A derivation of local commutativity from macrocausality using a quantum mechanical theory of measurement.W. M. de Muynck & J. P. H. W. van den Eijnde - 1984 - Foundations of Physics 14 (2):111-146.
    A theory of the joint measurement of quantum mechanical observables is generalized in order to make it applicable to the measurement of the local observables of field theory. Subsequently, the property of local commutativity, which is usually introduced as a postulate, is derived by means of the theory of measurement from a requirement of mutual nondisturbance, which, for local observables performed at a spacelike distance from each other, is interpreted as a requirement of macrocausality. Alternative attempts at establishing a deductive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Simultaneous measurement and joint probability distributions in quantum mechanics.Willem M. de Muynck, Peter A. E. M. Janssen & Alexander Santman - 1979 - Foundations of Physics 9 (1-2):71-122.
    The problem of simultaneous measurement of incompatible observables in quantum mechanics is studied on the one hand from the viewpoint of an axiomatic treatment of quantum mechanics and on the other hand starting from a theory of measurement. It is argued that it is precisely such a theory of measurement that should provide a meaning to the axiomatically introduced concepts, especially to the concept of observable. Defining an observable as a class of measurement procedures yielding a certain prescribed result for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • “Simultaneous measurement” from the standpoint of quantum estimation theory.Carl W. Helstrom - 1974 - Foundations of Physics 4 (4):453-463.
    The purpose of the simultaneous measurement of noncommuting quantum observables can be viewed as the joint estimation of parameters of the density operator of the quantum system. Joint estimation involves the application of a multiply parameterized operator-valued measure. An example related to the simultaneous estimation of the position and velocity of a particle is given. Conceptual difficulties attending simultaneous measurement of noncommuting observables are avoided by this formation.
    Download  
     
    Export citation  
     
    Bookmark   2 citations