Switch to: Citations

Add references

You must login to add references.
  1. Computation, individuation, and the received view on representation.Mark Sprevak - 2010 - Studies in History and Philosophy of Science Part A 41 (3):260-270.
    The ‘received view’ about computation is that all computations must involve representational content. Egan and Piccinini argue against the received view. In this paper, I focus on Egan’s arguments, claiming that they fall short of establishing that computations do not involve representational content. I provide positive arguments explaining why computation has to involve representational content, and how that representational content may be of any type. I also argue that there is no need for computational psychology to be individualistic. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The Rediscovery of the Mind.John R. Searle - 1992 - MIT Press. Edited by Ned Block & Hilary Putnam.
    The title of The Rediscovery of the Mind suggests the question "When was the mind lost?" Since most people may not be aware that it ever was lost, we must also then ask "Who lost it?" It was lost, of course, only by philosophers, by certain philosophers. This passed unnoticed by society at large. The "rediscovery" is also likely to pass unnoticed. But has the mind been rediscovered by the same philosophers who "lost" it? Probably not. John Searle is an (...)
    Download  
     
    Export citation  
     
    Bookmark   666 citations  
  • The Rediscovery of the Mind, by John Searle. [REVIEW]Mark William Rowe - 1992 - Philosophy 68 (265):415-418.
    Download  
     
    Export citation  
     
    Bookmark   649 citations  
  • The Mind as Neural Software? Understanding Functionalism, Computationalism, and Computational Functionalism.Gualtiero Piccinini - 2010 - Philosophy and Phenomenological Research 81 (2):269-311.
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism, recruit recent philosophical work on mechanisms and computation to shed light on them, and (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Mr. Russell's causal theory of perception.M. H. A. Newman - 1928 - Mind 37 (146):26-43.
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • A Simplicity Criterion for Physical Computation.Tyler Millhouse - 2019 - British Journal for the Philosophy of Science 70 (1):153-178.
    The aim of this paper is to offer a formal criterion for physical computation that allows us to objectively distinguish between competing computational interpretations of a physical system. The criterion construes a computational interpretation as an ordered pair of functions mapping (1) states of a physical system to states of an abstract machine, and (2) inputs to this machine to interventions in this physical system. This interpretation must ensure that counterfactuals true of the abstract machine have appropriate counterparts which are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Objections to Computationalism: A Survey.Marcin Miłkowski - 2018 - Roczniki Filozoficzne 66 (3):57-75.
    In this paper, the Author reviewed the typical objections against the claim that brains are computers, or, to be more precise, information-processing mechanisms. By showing that practically all the popular objections are based on uncharitable interpretations of the claim, he argues that the claim is likely to be true, relevant to contemporary cognitive science, and non-trivial.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Functions as based on a concept of general design.Ulrich Krohs - 2009 - Synthese 166 (1):69-89.
    Looking for an adequate explication of the concept of a biological function, several authors have proposed to link function to design. Unfortunately, known explications of biological design in turn refer to functions. The concept of general design I will introduce here breaks up this circle. I specify design with respect to its ontogenetic role. This allows function to be based on design without making reference to the history of the design, or to the phylogeny of an organism, while retaining the (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Triviality arguments against functionalism.Peter Godfrey-Smith - 2009 - Philosophical Studies 145 (2):273 - 295.
    “Triviality arguments” against functionalism in the philosophy of mind hold that the claim that some complex physical system exhibits a given functional organization is either trivial or has much less content than is usually supposed. I survey several earlier arguments of this kind, and present a new one that overcomes some limitations in the earlier arguments. Resisting triviality arguments is possible, but requires functionalists to revise popular views about the “autonomy” of functional description.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Active inference and free energy.Karl Friston - 2013 - Behavioral and Brain Sciences 36 (3):212-213.
    Why do brains have so many connections? The principles exposed by Andy Clark provide answers to questions like this by appealing to the notion that brains distil causal regularities in the sensorium and embody them in models of their world. For example, connections embody the fact that causes have particular consequences. This commentary considers the imperatives for this form of embodiment.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Mechanisms and natural kinds.Carl F. Craver - 2009 - Philosophical Psychology 22 (5):575-594.
    It is common to defend the Homeostatic Property Cluster ( HPC ) view as a third way between conventionalism and essentialism about natural kinds ( Boyd , 1989, 1991, 1997, 1999; Griffiths , 1997, 1999; Keil , 2003; Kornblith , 1993; Wilson , 1999, 2005; Wilson , Barker , & Brigandt , forthcoming ). According to the HPC view, property clusters are not merely conventionally clustered together; the co-occurrence of properties in the cluster is sustained by a similarity generating ( (...)
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • First principles in the life sciences: the free-energy principle, organicism, and mechanism.Matteo Colombo & Cory Wright - 2021 - Synthese 198 (14):3463–3488.
    The free-energy principle states that all systems that minimize their free energy resist a tendency to physical disintegration. Originally proposed to account for perception, learning, and action, the free-energy principle has been applied to the evolution, development, morphology, anatomy and function of the brain, and has been called a postulate, an unfalsifiable principle, a natural law, and an imperative. While it might afford a theoretical foundation for understanding the relationship between environment, life, and mind, its epistemic status is unclear. Also (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Does a rock implement every finite-state automaton?David J. Chalmers - 1996 - Synthese 108 (3):309-33.
    Hilary Putnam has argued that computational functionalism cannot serve as a foundation for the study of the mind, as every ordinary open physical system implements every finite-state automaton. I argue that Putnam's argument fails, but that it points out the need for a better understanding of the bridge between the theory of computation and the theory of physical systems: the relation of implementation. It also raises questions about the class of automata that can serve as a basis for understanding the (...)
    Download  
     
    Export citation  
     
    Bookmark   145 citations  
  • Explaining the Computational Mind.Marcin Miłkowski - 2013 - MIT Press.
    In the book, I argue that the mind can be explained computationally because it is itself computational—whether it engages in mental arithmetic, parses natural language, or processes the auditory signals that allow us to experience music. All these capacities arise from complex information-processing operations of the mind. By analyzing the state of the art in cognitive science, I develop an account of computational explanation used to explain the capacities in question.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Beyond Formal Structure: A Mechanistic Perspective on Computation and Implementation.Marcin Miłkowski - 2011 - Journal of Cognitive Science 12 (4):359-379.
    In this article, after presenting the basic idea of causal accounts of implementation and the problems they are supposed to solve, I sketch the model of computation preferred by Chalmers and argue that it is too limited to do full justice to computational theories in cognitive science. I also argue that it does not suffice to replace Chalmers’ favorite model with a better abstract model of computation; it is necessary to acknowledge the causal structure of physical computers that is not (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A new perspective on representational problems.Chris Eliasmith - 2005 - Journal of Cognitive Science 6:97-123.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Rediscovery of the Mind.John Searle - 1992 - Philosophy and Phenomenological Research 55 (1):201-207.
    Download  
     
    Export citation  
     
    Bookmark   495 citations  
  • What is morphological computation? On how the body contributes to cognition and control.Vincent C. Müller & Matej Hoffmann - 2017 - Artificial Life 23 (1):1-24.
    The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “off-loading computation from the brain to the body”, where the body is said to perform “morphological computation”. Our investigation of four characteristic cases of morphological computation in animals and robots shows that the ‘off-loading’ perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • O niearbitralnym kryterium posiadania struktury obliczeniowej.Paweł Grabarczyk - 2013 - Filozofia Nauki 21 (4):31-50.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bodily Processing: The Role of Morphological Computation.Przemysław Nowakowski - 2017 - Entropy 19 (7):1-17.
    The integration of embodied and computational approaches to cognition requires that non-neural body parts be described as parts of a computing system, which realizes cognitive processing. In this paper, based on research about morphological computations and the ecology of vision, I argue that nonneural body parts could be described as parts of a computational system, but they do not realize computation autonomously, only in connection with some kind of—even in the simplest form—central control system. Finally, I integrate the proposal defended (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Algorithms for quantum computation: Discrete logarithms and factoring.P. Shor - 1994 - Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science:124-134.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Simulating physics with computers.R. P. Feynman - 1982 - International Journal of Theoretical Physics 21 (6):467-488.
    Download  
     
    Export citation  
     
    Bookmark   74 citations