Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Machines, logic and quantum physics.David Deutsch, Artur Ekert & Rossella Lupacchini - 2000 - Bulletin of Symbolic Logic 6 (3):265-283.
    §1. Mathematics and the physical world. Genuine scientific knowledge cannot be certain, nor can it be justified a priori. Instead, it must be conjectured, and then tested by experiment, and this requires it to be expressed in a language appropriate for making precise, empirically testable predictions. That language is mathematics.This in turn constitutes a statement about what the physical world must be like if science, thus conceived, is to be possible. As Galileo put it, “the universe is written in the (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The dependence of computability on numerical notations.Ethan Brauer - 2021 - Synthese 198 (11):10485-10511.
    Which function is computed by a Turing machine will depend on how the symbols it manipulates are interpreted. Further, by invoking bizarre systems of notation it is easy to define Turing machines that compute textbook examples of uncomputable functions, such as the solution to the decision problem for first-order logic. Thus, the distinction between computable and uncomputable functions depends on the system of notation used. This raises the question: which systems of notation are the relevant ones for determining whether a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum algorithms: Philosophical lessons.Amit Hagar - 2007 - Minds and Machines 17 (2):233-247.
    I discuss the philosophical implications that the rising new science of quantum computing may have on the philosophy of computer science. While quantum algorithms leave the notion of Turing-Computability intact, they may re-describe the abstract space of computational complexity theory hence militate against the autonomous character of some of the concepts and categories of computer science.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Morphological Computation: Nothing but Physical Computation.Marcin Miłkowski - 2018 - Entropy 10 (20):942.
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including their energy efficiency, cost, reliability, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum hypercomputation—hype or computation?Amit Hagar & Alex Korolev - 2007 - Philosophy of Science 74 (3):347-363.
    A recent attempt to compute a (recursion‐theoretic) noncomputable function using the quantum adiabatic algorithm is criticized and found wanting. Quantum algorithms may outperform classical algorithms in some cases, but so far they retain the classical (recursion‐theoretic) notion of computability. A speculation is then offered as to where the putative power of quantum computers may come from.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Narratives of quantum theory in the age of quantum technologies.Alexei Grinbaum - 2017 - Ethics and Information Technology 19 (4):295-306.
    Quantum technologies can be presented to the public with or without introducing a strange trait of quantum theory responsible for their non-classical efficiency. Traditionally the message was centered on the superposition principle, while entanglement and properties such as contextuality have been gaining ground recently. A less theoretical approach is focused on simple protocols that enable technological applications. It results in a pragmatic narrative built with the help of the resource paradigm and principle-based reconstructions. I discuss the advantages and weaknesses of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Universality, Invariance, and the Foundations of Computational Complexity in the light of the Quantum Computer.Michael Cuffaro - 2018 - In Hansson Sven Ove (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Cham, Switzerland: Springer Verlag. pp. 253-282.
    Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding our practical limits. In this chapter I argue that the science of \emph{quantum computing} illuminates complexity theory by emphasising that its fundamental concepts are not model-independent, but that this does not, as some suggest, force us to radically revise the foundations of the theory. For model-independence (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the impact of quantum computing technology on future developments in high-performance scientific computing.Matthias Möller & Cornelis Vuik - 2017 - Ethics and Information Technology 19 (4):253-269.
    Quantum computing technologies have become a hot topic in academia and industry receiving much attention and financial support from all sides. Building a quantum computer that can be used practically is in itself an outstanding challenge that has become the ‘new race to the moon’. Next to researchers and vendors of future computing technologies, national authorities are showing strong interest in maturing this technology due to its known potential to break many of today’s encryption techniques, which would have significant and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completing the Physical Representation of Quantum Algorithms Provides a Quantitative Explanation of Their Computational Speedup.Giuseppe Castagnoli - 2018 - Foundations of Physics 48 (3):333-354.
    The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete. We complete it in three steps: extending the representation to the process of setting the problem, relativizing the extended representation to the problem solver to whom the problem setting must be concealed, and symmetrizing the relativized representation for time reversal to represent the reversibility of the underlying physical process. The third steps projects the input state of the representation, where the problem solver is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Skepticism and Information.Eric T. Kerr & Duncan Pritchard - 2012 - In Hilmi Demir (ed.), Philosophy of Engineering and Technology Volume 8. Springer.
    Philosophers of information, according to Luciano Floridi (The philosophy of information. Oxford University Press, Oxford, 2010, p 32), study how information should be “adequately created, processed, managed, and used.” A small number of epistemologists have employed the concept of information as a cornerstone of their theoretical framework. How this concept can be used to make sense of seemingly intractable epistemological problems, however, has not been widely explored. This paper examines Fred Dretske’s information-based epistemology, in particular his response to radical epistemological (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Active Fault‐Tolerant Quantum Error Correction: The Curse of the Open System.Amit Hagar - 2009 - Philosophy of Science 76 (4):506-535.
    Relying on the universality of quantum mechanics and on recent results known as the “threshold theorems,” quantum information scientists deem the question of the feasibility of large‐scale, fault‐tolerant, and computationally superior quantum computers as purely technological. Reconstructing this question in statistical mechanical terms, this article suggests otherwise by questioning the physical significance of the threshold theorems. The skepticism it advances is neither too strong (hence is consistent with the universality of quantum mechanics) nor too weak (hence is independent of technological (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end of a quantum computation as irreversible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum computation and pseudotelepathic games.Jeffrey Bub - 2008 - Philosophy of Science 75 (4):458-472.
    A quantum algorithm succeeds not because the superposition principle allows ‘the computation of all values of a function at once’ via ‘quantum parallelism’, but rather because the structure of a quantum state space allows new sorts of correlations associated with entanglement, with new possibilities for information‐processing transformations between correlations, that are not possible in a classical state space. I illustrate this with an elementary example of a problem for which a quantum algorithm is more efficient than any classical algorithm. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Technologies: a Hermeneutic Technology Assessment Approach.Luca M. Possati - 2024 - NanoEthics 18 (1):1-15.
    This paper develops a hermeneutic technology assessment of quantum technologies. It offers a “vision assessment” of quantum technologies that can eventually lead to socio-ethical analysis. Section 2 describes this methodological approach and in particular the concept of the hermeneutic circle applied to technology. Section 3 gives a generic overview of quantum technologies and their impacts. Sections 4 and 5 apply the hermeneutic technology assessment approach to the study of quantum technologies. Section 5 proposes distinguishing three levels in the analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflections on quantum computing.Michael J. Dinneen, Karl Svozil & Cristian S. Calude - 2000 - Complexity 6 (1):35-37.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cybersecurity trends in Cooperative, Connected and Automated Mobility.O. Castillo Campo, V. Gayoso Martínez, L. Hernández Encinas, A. Martín Muñoz & R. Álvarez Fernández - forthcoming - Logic Journal of the IGPL.
    Cooperative, connected and automated mobility technologies have the potential to revolutionize transportation systems and enhance safety, efficiency and sustainability. However, the increasing reliance on digital technologies also introduces new cybersecurity risks that can compromise the safety and privacy of passengers and the integrity of transportation systems. The purpose of this article is to examine the most important threats, vulnerabilities, risks and challenges related to automated mobility and to review the status of the most promising standardization initiatives on cryptography in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum computation, quantum theory and AI.Mingsheng Ying - 2010 - Artificial Intelligence 174 (2):162-176.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum information processing, operational quantum logic, convexity, and the foundations of physics.Howard Barnum - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):343-379.
    Quantum information science is a source of task-related axioms whose consequences can be explored in general settings encompassing quantum mechanics, classical theory, and more. Quantum states are compendia of probabilities for the outcomes of possible operations we may perform on a system: ''operational states.'' I discuss general frameworks for ''operational theories'' (sets of possible operational states of a system), in which convexity plays key role. The main technical content of the paper is in a theorem that any such theory naturally (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information, physics, and computation.Subhash C. Kak - 1996 - Foundations of Physics 26 (1):127-137.
    This paper presents several observations on the connections between information, physics, and computation. In particular, the computing power of quantum computers is examined. Quantum theory is characterized by superimposed states and nonlocal interactions. It is argued that recently studied quantum computers, which are based on local interactions, cannot simulate quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics.Giuseppe Castagnoli - 2016 - Foundations of Physics 46 (3):360-381.
    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum computation and the untenability of a “No fundamental mentality” constraint on physicalism.Christopher Devlin Brown - 2022 - Synthese 201 (1):1-18.
    Though there is yet no consensus on the right way to understand ‘physicalism’, most philosophers agree that, regardless of whatever else is required, physicalism cannot be true if there exists fundamental mentality. I will follow Jessica Wilson (Philosophical Studies 131:61–99, 2006) in calling this the 'No Fundamental Mentality' (NFM) constraint on physicalism. Unfortunately for those who wish to constrain physicalism in this way, NFM admits of a counterexample: an artificially intelligent quantum computer which employs quantum properties as part of its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bohmian trajectories and the ether: Where does the analogy fail?Louis Marchildon - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):263-274.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hardness assumptions in the foundations of theoretical computer science.Jan Krajíček - 2005 - Archive for Mathematical Logic 44 (6):667-675.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum mechanics and computation.Bart D’Hooghe & Jaroslaw Pykacz - 2004 - Foundations of Science 9 (4):387-404.
    In quantum computation non classical features such as superposition states and entanglement are used to solve problems in new ways, impossible on classical digital computers.We illustrate by Deutsch algorithm how a quantum computer can use superposition states to outperform any classical computer. We comment on the view of a quantum computer as a massive parallel computer and recall Amdahls law for a classical parallel computer. We argue that the view on quantum computation as a massive parallel computation disregards the presence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information and quantum theory.Olival Freire Junior & Ileana Maria Greca - 2013 - Scientiae Studia 11 (1):11-33.
    A pesquisa em informação quântica sugere uma íntima conexão entre o conceito de informação e a teoria quântica, mas essa conexão envolve nuances cuja análise é o objeto deste trabalho. A sabedoria comum nesse campo divide-se em duas grandes áreas, não excludentes entre si. Há os que são movidos pela possibilidade de uso da teoria quântica em um novo campo, o da computação, independentemente do esclarecimento de seus fundamentos, aqui incluído o conceito de "informação". Alguns consideram que estamos diante de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Quantum physical symbol systems.Kathryn Blackmond Laskey - 2006 - Journal of Logic, Language and Information 15 (1-2):109-154.
    Because intelligent agents employ physically embodied cognitive systems to reason about the world, their cognitive abilities are constrained by the laws of physics. Scientists have used digital computers to develop and validate theories of physically embodied cognition. Computational theories of intelligence have advanced our understanding of the nature of intelligence and have yielded practically useful systems exhibiting some degree of intelligence. However, the view of cognition as algorithms running on digital computers rests on implicit assumptions about the physical world that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum Teleportation and Grover’s Algorithm Without the Wavefunction.Gerd Niestegge - 2017 - Foundations of Physics 47 (2):274-293.
    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover’s search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theory of quantum computation and philosophy of mathematics. Part I.Krzysztof Wójtowicz - 2009 - Logic and Logical Philosophy 18 (3-4):313-332.
    The aim of this paper is to present some basic notions of the theory of quantum computing and to compare them with the basic notions of the classical theory of computation. I am convinced, that the results of quantum computation theory (QCT) are not only interesting in themselves, but also should be taken into account in discussions concerning the nature of mathematical knowledge. The philosophical discussion will however be postponed to another paper. QCT seems not to be well-known among philosophers (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Engineering Entanglement, Conceptualizing Quantum Information.Chen-Pang Yeang - 2011 - Annals of Science 68 (3):325-350.
    Summary Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum computers and employing entanglement in communications (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum key distribution without the wavefunction.Gerd Niestegge - unknown
    A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations for the Hilbert space version of quantum key distribution, but base upon a general non-classical extension of conditional probability. A special state-independent conditional probability is identifed as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Editors' Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing. [REVIEW]J. Michael Dunn, Lawrence S. Moss & Zhenghan Wang - 2013 - Journal of Philosophical Logic 42 (3):443-459.
    Download  
     
    Export citation  
     
    Bookmark   1 citation