Switch to: Citations

Add references

You must login to add references.
  1. Creature forcing and five cardinal characteristics in Cichoń’s diagram.Arthur Fischer, Martin Goldstern, Jakob Kellner & Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (7-8):1045-1103.
    We use a creature construction to show that consistently $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$The same method shows the consistency of $$\begin{aligned} \mathfrak d=\aleph _1= {{\mathrm{cov}}}< {{\mathrm{non}}}< {{\mathrm{non}}}< {{\mathrm{cof}}} < 2^{\aleph _0}. \end{aligned}$$.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Decisive creatures and large continuum.Jakob Kellner & Saharon Shelah - 2009 - Journal of Symbolic Logic 74 (1):73-104.
    For f, g $ \in \omega ^\omega $ let $c_{f,g}^\forall $ be the minimal number of uniform g-splitting trees (or: Slaloms) to cover the uniform f-splitting tree, i.e., for every branch v of the f-tree, one of the g-trees contains v. $c_{f,g}^\exists $ is the dual notion: For every branch v, one of the g-trees guesses v(m) infinitely often. It is consistent that $c_{f \in ,g \in }^\exists = c_{f \in ,g \in }^\forall = k_ \in $ for N₁ many (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Creature forcing and large continuum: the joy of halving.Jakob Kellner & Saharon Shelah - 2012 - Archive for Mathematical Logic 51 (1-2):49-70.
    For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f,g\in\omega^\omega}$$\end{document} let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^\forall_{f,g}}$$\end{document} be the minimal number of uniform g-splitting trees needed to cover the uniform f-splitting tree, i.e., for every branch ν of the f-tree, one of the g-trees contains ν. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c^\exists_{f,g}}$$\end{document} be the dual notion: For every branch ν, one of the g-trees guesses ν(m) infinitely often. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Specialising Aronszajn trees by countable approximations.Heike Mildenberger & Saharon Shelah - 2003 - Archive for Mathematical Logic 42 (7):627-647.
    We show that there are proper forcings based upon countable trees of creatures that specialise a given Aronszajn tree.
    Download  
     
    Export citation  
     
    Bookmark   3 citations