Switch to: Citations

Add references

You must login to add references.
  1. Phenotypic Evolution: A Reaction Norm Perspective.Carl Schlichting & Massimo Pigliucci - 1998 - Sinauer.
    Phenotypic Evolution explicitly recognizes organisms as complex genetic-epigenetic systems developing in response to changing internal and external environments. As a key to a better understanding of how phenotypes evolve, the authors have developed a framework that centers on the concept of the Developmental Reaction Norm. This encompasses their views: (1) that organisms are better considered as integrated units than as disconnected parts (allometry and phenotypic integration); (2) that an understanding of ontogeny is vital for evaluating evolution of adult forms (ontogenetic (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • (5 other versions)The origin of species.Charles Darwin - 1859 - New York: Norton. Edited by Philip Appleman.
    In The Origin of Species (1859) Darwin challenged many of the most deeply-held beliefs of the Western world. Arguing for a material, not divine, origin of species, he showed that new species are achieved by "natural selection." The Origin communicates the enthusiasm of original thinking in an open, descriptive style, and Darwin's emphasis on the value of diversity speaks more strongly now than ever. As well as a stimulating introduction and detailed notes, this edition offers a register of the many (...)
    Download  
     
    Export citation  
     
    Bookmark   481 citations  
  • Homology and the origin of correspondence.Ingo Brigandt - 2002 - Biology and Philosophy 17 (3):389-407.
    Homology is a natural kind term and a precise account of what homology is has to come out of theories about the role of homologues in evolution and development. Definitions of homology are discussed with respect to the question as to whether they are able to give a non-circular account of the correspondence or sameness referred to by homology. It is argued that standard accounts tie homology to operational criteria or specific research projects, but are not yet able to offer (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Material Basis of Evolution.Richard Goldschmidt - 1941 - Philosophy of Science 8 (3):394-395.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Canalization: A molecular genetic perspective.Adam S. Wilkins - 1997 - Bioessays 19 (3):257-262.
    The phenomenon of ‘canalization’ ‐ the genetic capacity to buffer developmental pathways against mutational or environmental perturbations ‐ was first characterized in the late 1930s and early 1940s. Despite enormous subsequent progress in understanding the nature of the genetic material and the molecular basis of gene expression, there have been few attempts to interpret the classical work on canalization in molecular genetic terms. Some recent findings, however, bear on one form of canalization, ‘genetic canalization’, the stabilization of development against mutational (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Hox and wings.Jean Deutsch - 2005 - Bioessays 27 (7):673-675.
    In many bilaterian phyla, appendages are morphological traits that characterise the identity of the various body parts. In pterygote insects, wings are dorsal appendages on the thorax. The famous “bithorax” fly created by Ed Lewis is the emblematic example of the role of Hox genes.1 Now, Tomoyasu et al.,2 using classical genetics, transgenesis and RNAi, have examined the function of thoracic Hox genes in the beetle Tribolium castaneum. Beetles have rigid elytra in place of the first pair of wings. Instead (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations