Switch to: Citations

Add references

You must login to add references.
  1. Forcing Indestructibility of Set-Theoretic Axioms.Bernhard König - 2007 - Journal of Symbolic Logic 72 (1):349 - 360.
    Various theorems for the preservation of set-theoretic axioms under forcing are proved, regarding both forcing axioms and axioms true in the Lévy collapse. These show in particular that certain applications of forcing axioms require to add generic countable sequences high up in the set-theoretic hierarchy even before collapsing everything down to ‮א‬₁. Later we give applications, among them the consistency of MM with ‮א‬ω not being Jónsson which answers a question raised in the set theory meeting at Oberwolfach in 2005.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Guessing models and generalized Laver diamond.Matteo Viale - 2012 - Annals of Pure and Applied Logic 163 (11):1660-1678.
    We analyze the notion of guessing model, a way to assign combinatorial properties to arbitrary regular cardinals. Guessing models can be used, in combination with inaccessibility, to characterize various large cardinal axioms, ranging from supercompactness to rank-to-rank embeddings. The majority of these large cardinal properties can be defined in terms of suitable elementary embeddings j:Vγ→Vλ. One key observation is that such embeddings are uniquely determined by the image structures j[Vγ]≺Vλ. These structures will be the prototypes guessing models. We shall show, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Strong tree properties for small cardinals.Laura Fontanella - 2013 - Journal of Symbolic Logic 78 (1):317-333.
    An inaccessible cardinal $\kappa$ is supercompact when $(\kappa, \lambda)$-ITP holds for all $\lambda\geq \kappa$. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where for every $n\geq 2$ and $\mu\geq \aleph_n$, we have $(\aleph_n, \mu)$-ITP.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Aronszajn trees on [aleph]2 and [aleph]3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • On the Hamkins approximation property.William J. Mitchell - 2006 - Annals of Pure and Applied Logic 144 (1-3):126-129.
    We give a short proof of a lemma which generalizes both the main lemma from the original construction in the author’s thesis of a model with no ω2-Aronszajn trees, and also the “Key Lemma” in Hamkins’ gap forcing theorems. The new lemma directly yields Hamkins’ newer lemma stating that certain forcing notions have the approximation property.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A weak variation of Shelah's I[ω₂].William Mitchell - 2004 - Journal of Symbolic Logic 69 (1):94-100.
    We use a $\kappa^{+}-Mahlo$ cardinal to give a forcing construction of a model in which there is no sequence $\langle A_{\beta} : \beta \textless \omega_{2} \rangle$ of sets of cardinality $\omega_{1}$ such that $\{\lambda \textless \omega_{2} : \existsc \subset \lambda & (\bigcupc = \lambda otp(c) = \omega_{1} & \forall \beta \textless \lambda (c \cap \beta \in A_{\beta}))\}$ is stationary.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strong tree properties for two successive cardinals.Laura Fontanella - 2012 - Archive for Mathematical Logic 51 (5-6):601-620.
    An inaccessible cardinal κ is supercompact when (κ, λ)-ITP holds for all λ ≥ κ. We prove that if there is a model of ZFC with two supercompact cardinals, then there is a model of ZFC where simultaneously \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\aleph_2, \mu)}$$\end{document} -ITP and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\aleph_3, \mu')}$$\end{document} -ITP hold, for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu\geq \aleph_2}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reflecting stationary sets and successors of singular cardinals.Saharon Shelah - 1991 - Archive for Mathematical Logic 31 (1):25-53.
    REF is the statement that every stationary subset of a cardinal reflects, unless it fails to do so for a trivial reason. The main theorem, presented in Sect. 0, is that under suitable assumptions it is consistent that REF and there is a κ which is κ+n -supercompact. The main concepts defined in Sect. 1 are PT, which is a certain statement about the existence of transversals, and the “bad” stationary set. It is shown that supercompactness (and even the failure (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • The combinatorial essence of supercompactness.Christoph Weiß - 2012 - Annals of Pure and Applied Logic 163 (11):1710-1717.
    We introduce combinatorial principles that characterize strong compactness and supercompactness for inaccessible cardinals but also make sense for successor cardinals. Their consistency is established from what is supposedly optimal. Utilizing the failure of a weak version of a square, we show that the best currently known lower bounds for the consistency strength of these principles can be applied.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Adding Closed Unbounded Subsets of ω₂ with Finite Forcing.William J. Mitchell - 2005 - Notre Dame Journal of Formal Logic 46 (3):357-371.
    An outline is given of the proof that the consistency of a κ⁺-Mahlo cardinal implies that of the statement that I[ω₂] does not include any stationary subsets of Cof(ω₁). An additional discussion of the techniques of this proof includes their use to obtain a model with no ω₂-Aronszajn tree and to add an ω₂-Souslin tree with finite conditions.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • MRP , tree properties and square principles.Remi Strullu - 2011 - Journal of Symbolic Logic 76 (4):1441-1452.
    We show that MRP + MA implies that ITP(λ, ω 2 ) holds for all cardinal λ ≥ ω 2 . This generalizes a result by Weiß who showed that PFA implies that ITP(λ, ω 2 ) holds for all cardinal λ ≥ ω 2 . Consequently any of the known methods to prove MRP + MA consistent relative to some large cardinal hypothesis requires the existence of a strongly compact cardinal. Moreover if one wants to force MRP + MA (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Forcing with Sequences of Models of Two Types.Itay Neeman - 2014 - Notre Dame Journal of Formal Logic 55 (2):265-298.
    We present an approach to forcing with finite sequences of models that uses models of two types. This approach builds on earlier work of Friedman and Mitchell on forcing to add clubs in cardinals larger than $\aleph_{1}$, with finite conditions. We use the two-type approach to give a new proof of the consistency of the proper forcing axiom. The new proof uses a finite support forcing, as opposed to the countable support iteration in the standard proof. The distinction is important (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • A model of Cummings and Foreman revisited.Spencer Unger - 2014 - Annals of Pure and Applied Logic 165 (12):1813-1831.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quotients of strongly proper forcings and guessing models.Sean Cox & John Krueger - 2016 - Journal of Symbolic Logic 81 (1):264-283.
    Download  
     
    Export citation  
     
    Bookmark   7 citations