- The tree property at and.Dima Sinapova & Spencer Unger - 2018 - Journal of Symbolic Logic 83 (2):669-682.details
|
|
On the Consistency of the Definable Tree Property on $\aleph_1$.Amir Leshem - 2000 - Journal of Symbolic Logic 65 (3):1204-1214.details
|
|
The Eightfold Way.James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot & Dima Sinapova - 2018 - Journal of Symbolic Logic 83 (1):349-371.details
|
|
The tree property at the double successor of a singular cardinal with a larger gap.Sy-David Friedman, Radek Honzik & Šárka Stejskalová - 2018 - Annals of Pure and Applied Logic 169 (6):548-564.details
|
|
Trees and Stationary Reflection at Double Successors of Regular Cardinals.Thomas Gilton, Maxwell Levine & Šárka Stejskalová - forthcoming - Journal of Symbolic Logic:1-31.details
|
|
The Club Guessing Ideal: Commentary on a Theorem of Gitik and Shelah.Matthew Foreman & Peter Komjath - 2005 - Journal of Mathematical Logic 5 (1):99-147.details
|
|
A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.details
|
|
The tree property and the continuum function below.Radek Honzik & Šárka Stejskalová - 2018 - Mathematical Logic Quarterly 64 (1-2):89-102.details
|
|
Perfect subsets of generalized baire spaces and long games.Philipp Schlicht - 2017 - Journal of Symbolic Logic 82 (4):1317-1355.details
|
|
Strong tree properties for two successive cardinals.Laura Fontanella - 2012 - Archive for Mathematical Logic 51 (5-6):601-620.details
|
|
The Strong and Super Tree Properties at Successors of Singular Cardinals.William Adkisson - 2024 - Journal of Symbolic Logic 89 (3):1251-1283.details
|
|
Easton's theorem for the tree property below ℵ.Šárka Stejskalová - 2021 - Annals of Pure and Applied Logic 172 (7):102974.details
|
|
Aronszajn and Kurepa trees.James Cummings - 2018 - Archive for Mathematical Logic 57 (1-2):83-90.details
|
|
The special Aronszajn tree property.Mohammad Golshani & Yair Hayut - 2019 - Journal of Mathematical Logic 20 (1):2050003.details
|
|
Aronszajn trees and the successors of a singular cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.details
|
|
Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.details
|
|
Fragility and indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.details
|
|
Some applications of mixed support iterations.John Krueger - 2009 - Annals of Pure and Applied Logic 158 (1-2):40-57.details
|
|
(1 other version)Review: Uri Abraham, Aronszajn Trees on $mathscr{N}2$ and $mathscr{N}3$; James Cummings, Matthew Foreman, The Tree Property; Menachem Magidor, Saharon Shelah, The Tree Property at Successors of Singular Cardinals. [REVIEW]Arthur W. Apter - 2001 - Bulletin of Symbolic Logic 7 (2):283-285.details
|
|
The tree property at the ℵ 2 n 's and the failure of SCH at ℵ ω.Sy-David Friedman & Radek Honzik - 2015 - Annals of Pure and Applied Logic 166 (4):526-552.details
|
|
A remark on the tree property in a choiceless context.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (5-6):585-590.details
|
|
The tree property at first and double successors of singular cardinals with an arbitrary gap.Alejandro Poveda - 2020 - Annals of Pure and Applied Logic 171 (5):102778.details
|
|
Guessing models and the approachability ideal.Rahman Mohammadpour & Boban Veličković - 2020 - Journal of Mathematical Logic 21 (2):2150003.details
|
|
The tree property at double successors of singular cardinals of uncountable cofinality with infinite gaps.Mohammad Golshani & Alejandro Poveda - 2021 - Annals of Pure and Applied Logic 172 (1):102853.details
|
|
Small $$\mathfrak {u}(\kappa )$$ u ( κ ) at singular $$\kappa $$ κ with compactness at $$\kappa ^{++}$$ κ + +.Radek Honzik & Šárka Stejskalová - 2021 - Archive for Mathematical Logic 61 (1):33-54.details
|
|
Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.details
|
|
The tree property below ℵ ω ⋅ 2.Spencer Unger - 2016 - Annals of Pure and Applied Logic 167 (3):247-261.details
|
|
Indestructibility of some compactness principles over models of PFA.Radek Honzik, Chris Lambie-Hanson & Šárka Stejskalová - 2024 - Annals of Pure and Applied Logic 175 (1):103359.details
|
|
Club stationary reflection and other combinatorial principles at ℵ+2.Thomas Gilton & Šárka Stejskalová - 2025 - Annals of Pure and Applied Logic 176 (1):103489.details
|
|
The harrington–shelah model with large continuum.Thomas Gilton & John Krueger - 2019 - Journal of Symbolic Logic 84 (2):684-703.details
|
|