Switch to: Citations

Add references

You must login to add references.
  1. Semiproper forcing axiom implies Martin maximum but not PFA+.Saharon Shelah - 1987 - Journal of Symbolic Logic 52 (2):360-367.
    We prove that MM (Martin maximum) is equivalent (in ZFC) to the older axiom SPFA (semiproper forcing axiom). We also prove that SPFA does not imply SPFA + or even PFA + (using the consistency of a large cardinal).
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Jensen's □ principles and the Novak number of partially ordered sets.Boban Veličković - 1986 - Journal of Symbolic Logic 51 (1):47-58.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Square in core models.Ernest Schimmerling & Martin Zeman - 2001 - Bulletin of Symbolic Logic 7 (3):305-314.
    We prove that in all Mitchell-Steel core models, □ κ holds for all κ. (See Theorem 2.). From this we obtain new consistency strength lower bounds for the failure of □ κ if κ is either singular and countably closed, weakly compact, or measurable. (Corallaries 5, 8, and 9.) Jensen introduced a large cardinal property that we call subcompactness; it lies between superstrength and supercompactness in the large cardinal hierarchy. We prove that in all Jensen core models, □ κ holds (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations