Switch to: References

Add citations

You must login to add citations.
  1. Local saturation of the non-stationary ideal over Pκλ.Toshimichi Usuba - 2007 - Annals of Pure and Applied Logic 149 (1-3):100-123.
    Starting with a λ-supercompact cardinal κ, where λ is a regular cardinal greater than or equal to κ, we produce a model with a stationary subset S of such that , the ideal generated by the non-stationary ideal over together with , is λ+-saturated. Using this model we prove the consistency of the existence of such a stationary set together with the Generalized Continuum Hypothesis . We also show that in our model we can make -saturated, where S is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Universal partial indestructibility and strong compactness.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (5):524-531.
    For any ordinal δ, let λδ be the least inaccessible cardinal above δ. We force and construct a model in which the least supercompact cardinal κ is indestructible under κ-directed closed forcing and in which every measurable cardinal δ < κ is < λδ strongly compact and has its < λδ strong compactness indestructible under δ-directed closed forcing of rank less than λδ. In this model, κ is also the least strongly compact cardinal. We also establish versions of this result (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizing strong compactness via strongness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (4):375.
    We construct a model in which the strongly compact cardinals can be non-trivially characterized via the statement “κ is strongly compact iff κ is a measurable limit of strong cardinals”. If our ground model contains large enough cardinals, there will be supercompact cardinals in the universe containing this characterization of the strongly compact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inner-Model Reflection Principles.Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins, Jonas Reitz & Ralf Schindler - 2020 - Studia Logica 108 (3):573-595.
    We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indestructible strong compactness and level by level inequivalence.Arthur W. Apter - 2013 - Mathematical Logic Quarterly 59 (4-5):371-377.
    If are such that δ is indestructibly supercompact and γ is measurable, then it must be the case that level by level inequivalence between strong compactness and supercompactness fails. We prove a theorem which points to this result being best possible. Specifically, we show that relative to the existence of cardinals such that κ1 is λ‐supercompact and λ is inaccessible, there is a model for level by level inequivalence between strong compactness and supercompactness containing a supercompact cardinal in which κ’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • The failure of GCH at a degree of supercompactness.Brent Cody - 2012 - Mathematical Logic Quarterly 58 (1):83-94.
    We determine the large cardinal consistency strength of the existence of a λ-supercompact cardinal κ such that equation image fails at λ. Indeed, we show that the existence of a λ-supercompact cardinal κ such that 2λ ≥ θ is equiconsistent with the existence of a λ-supercompact cardinal that is also θ-tall. We also prove some basic facts about the large cardinal notion of tallness with closure.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coding into HOD via normal measures with some applications.Arthur W. Apter & Shoshana Friedman - 2011 - Mathematical Logic Quarterly 57 (4):366-372.
    We develop a new method for coding sets while preserving GCH in the presence of large cardinals, particularly supercompact cardinals. We will use the number of normal measures carried by a measurable cardinal as an oracle, and therefore, in order to code a subset A of κ, we require that our model contain κ many measurable cardinals above κ. Additionally we will describe some of the applications of this result. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hierarchies of forcing axioms I.Itay Neeman & Ernest Schimmerling - 2008 - Journal of Symbolic Logic 73 (1):343-362.
    We prove new upper bound theorems on the consistency strengths of SPFA (θ), SPFA(θ-linked) and SPFA(θ⁺-cc). Our results are in terms of (θ, Γ)-subcompactness, which is a new large cardinal notion that combines the ideas behind subcompactness and Γ-indescribability. Our upper bound for SPFA(c-linked) has a corresponding lower bound, which is due to Neeman and appears in his follow-up to this paper. As a corollary, SPFA(c-linked) and PFA(c-linked) are each equiconsistent with the existence of a $\Sigma _{1}^{2}$ -indescribable cardinal. Our (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An equiconsistency for universal indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.
    We obtain an equiconsistency for a weak form of universal indestructibility for strongness. The equiconsistency is relative to a cardinal weaker in consistency strength than a Woodin cardinal. Stewart Baldwin's notion of hyperstrong cardinal. We also briefly indicate how our methods are applicable to universal indestructibility for supercompactness and strong compactness.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The weakly compact reflection principle need not imply a high order of weak compactness.Brent Cody & Hiroshi Sakai - 2020 - Archive for Mathematical Logic 59 (1-2):179-196.
    The weakly compact reflection principle\\) states that \ is a weakly compact cardinal and every weakly compact subset of \ has a weakly compact proper initial segment. The weakly compact reflection principle at \ implies that \ is an \-weakly compact cardinal. In this article we show that the weakly compact reflection principle does not imply that \ is \\)-weakly compact. Moreover, we show that if the weakly compact reflection principle holds at \ then there is a forcing extension preserving (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diamond (on the regulars) can fail at any strongly unfoldable cardinal.Mirna Džamonja & Joel David Hamkins - 2006 - Annals of Pure and Applied Logic 144 (1-3):83-95.
    If κ is any strongly unfoldable cardinal, then this is preserved in a forcing extension in which κ fails. This result continues the progression of the corresponding results for weakly compact cardinals, due to Woodin, and for indescribable cardinals, due to Hauser.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Hierarchies of forcing axioms, the continuum hypothesis and square principles.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):256-282.
    I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle atω2, and that its effect on the failure of weak squares is very similar to that of Martin’s Maximum.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strongly uplifting cardinals and the boldface resurrection axioms.Joel David Hamkins & Thomas A. Johnstone - 2017 - Archive for Mathematical Logic 56 (7-8):1115-1133.
    We introduce the strongly uplifting cardinals, which are equivalently characterized, we prove, as the superstrongly unfoldable cardinals and also as the almost-hugely unfoldable cardinals, and we show that their existence is equiconsistent over ZFC with natural instances of the boldface resurrection axiom, such as the boldface resurrection axiom for proper forcing.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.
    We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.
    We prove three theorems concerning Laver indestructibility, strong compactness, and measurability. We then state some related open questions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
    Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Blowing up the power set of the least measurable.Arthur W. Apter & James Cummings - 2002 - Journal of Symbolic Logic 67 (3):915-923.
    We prove some results related to the problem of blowing up the power set of the least measurable cardinal. Our forcing results improve those of [1] by using the optimal hypothesis.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The tree property at the ℵ 2 n 's and the failure of SCH at ℵ ω.Sy-David Friedman & Radek Honzik - 2015 - Annals of Pure and Applied Logic 166 (4):526-552.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
    Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • More on the Preservation of Large Cardinals Under Class Forcing.Joan Bagaria & Alejandro Poveda - 2023 - Journal of Symbolic Logic 88 (1):290-323.
    We prove two general results about the preservation of extendible and $C^{(n)}$ -extendible cardinals under a wide class of forcing iterations (Theorems 5.4 and 7.5). As applications we give new proofs of the preservation of Vopěnka’s Principle and $C^{(n)}$ -extendible cardinals under Jensen’s iteration for forcing the GCH [17], previously obtained in [8, 27], respectively. We prove that $C^{(n)}$ -extendible cardinals are preserved by forcing with standard Easton-support iterations for any possible $\Delta _2$ -definable behaviour of the power-set function on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which below the least supercompact cardinal κ, there is a stationary set of cardinals on which SCH fails. In this model, the structure of the class of supercompact cardinals can be arbitrary.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indestructibility and the linearity of the Mitchell ordering.Arthur W. Apter - 2024 - Archive for Mathematical Logic 63 (3):473-482.
    Suppose that \(\kappa \) is indestructibly supercompact and there is a measurable cardinal \(\lambda > \kappa \). It then follows that \(A_0 = \{\delta is a measurable cardinal and the Mitchell ordering of normal measures over \(\delta \) is nonlinear \(\}\) is unbounded in \(\kappa \). If the Mitchell ordering of normal measures over \(\lambda \) is also linear, then by reflection (and without any use of indestructibility), \(A_1= \{\delta is a measurable cardinal and the Mitchell ordering of normal measures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (15 other versions)2007 European Summer Meeting of the Association for Symbolic Logic: Logic Colloquium '07.Steffen Lempp - 2008 - Bulletin of Symbolic Logic 14 (1):123-159.
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity crises and strong compactness III: Woodin cardinals. [REVIEW]Arthur W. Apter & Grigor Sargsyan - 2006 - Archive for Mathematical Logic 45 (3):307-322.
    We show that it is consistent, relative to n ∈ ω supercompact cardinals, for the strongly compact and measurable Woodin cardinals to coincide precisely. In particular, it is consistent for the first n strongly compact cardinals to be the first n measurable Woodin cardinals, with no cardinal above the n th strongly compact cardinal being measurable. In addition, we show that it is consistent, relative to a proper class of supercompact cardinals, for the strongly compact cardinals and the cardinals which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A universal indestructibility theorem compatible with level by level equivalence.Arthur W. Apter - 2015 - Archive for Mathematical Logic 54 (3-4):463-470.
    We prove an indestructibility theorem for degrees of supercompactness that is compatible with level by level equivalence between strong compactness and supercompactness.
    Download  
     
    Export citation  
     
    Bookmark  
  • Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.
    A cardinal κ is nearly θ-supercompact if for every A⊆θ, there exists a transitive M⊨ZFC− closed under θ and j″θ∈N.2 This concept strictly refines the θ-supercompactness hierarchy as every θ-supercompact cardinal is nearly θ-supercompact, and every nearly 2θ<κ-supercompact cardinal κ is θ-supercompact. Moreover, if κ is a θ-supercompact cardinal for some θ such that θ<κ=θ, we can move to a forcing extension preserving all cardinals below θ++ where κ remains θ-supercompact but is not nearly θ+-supercompact. We will also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Universal indestructibility for degrees of supercompactness and strongly compact cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.
    We establish two theorems concerning strongly compact cardinals and universal indestructibility for degrees of supercompactness. In the first theorem, we show that universal indestructibility for degrees of supercompactness in the presence of a strongly compact cardinal is consistent with the existence of a proper class of measurable cardinals. In the second theorem, we show that universal indestructibility for degrees of supercompactness is consistent in the presence of two non-supercompact strongly compact cardinals, each of which exhibits a significant amount of indestructibility (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Large cardinals and definable well-orders on the universe.Andrew D. Brooke-Taylor - 2009 - Journal of Symbolic Logic 74 (2):641-654.
    We use a reverse Easton forcing iteration to obtain a universe with a definable well-order, while preserving the GCH and proper classes of a variety of very large cardinals. This is achieved by coding using the principle ◊ $_{k^ - }^* $ at a proper class of cardinals k. By choosing the cardinals at which coding occurs sufficiently sparsely, we are able to lift the embeddings witnessing the large cardinal properties without having to meet any non-trivial master conditions.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fusion and large cardinal preservation.Sy-David Friedman, Radek Honzik & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (12):1247-1273.
    In this paper we introduce some fusion properties of forcing notions which guarantee that an iteration with supports of size ⩽κ not only does not collapse κ+ but also preserves the strength of κ. This provides a general theory covering the known cases of tree iterations which preserve large cardinals [3], Friedman and Halilović [5], Friedman and Honzik [6], Friedman and Magidor [8], Friedman and Zdomskyy [10], Honzik [12]).
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
    We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Indestructibility when the first two measurable cardinals are strongly compact.Arthur W. Apter - 2022 - Journal of Symbolic Logic 87 (1):214-227.
    We prove two theorems concerning indestructibility properties of the first two strongly compact cardinals when these cardinals are in addition the first two measurable cardinals. Starting from two supercompact cardinals $\kappa _1 < \kappa _2$, we force and construct a model in which $\kappa _1$ and $\kappa _2$ are both the first two strongly compact and first two measurable cardinals, $\kappa _1$ ’s strong compactness is fully indestructible, and $\kappa _2$ ’s strong compactness is indestructible under $\mathrm {Add}$ for any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence.Arthur W. Apter - 2006 - Mathematical Logic Quarterly 52 (5):457-463.
    We construct models for the level by level equivalence between strong compactness and supercompactness in which for κ the least supercompact cardinal and δ ≤ κ any cardinal which is either a strong cardinal or a measurable limit of strong cardinals, 2δ > δ+ and δ is < 2δ supercompact. In these models, the structure of the class of supercompact cardinals can be arbitrary, and the size of the power set of κ can essentially be made as large as desired. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strongly unfoldable cardinals made indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.
    I provide indestructibility results for large cardinals consistent with V = L, such as weakly compact, indescribable and strongly unfoldable cardinals. The Main Theorem shows that any strongly unfoldable cardinal κ can be made indestructible by <κ-closed. κ-proper forcing. This class of posets includes for instance all <κ-closed posets that are either κ -c.c, or ≤κ-strategically closed as well as finite iterations of such posets. Since strongly unfoldable cardinals strengthen both indescribable and weakly compact cardinals, the Main Theorem therefore makes (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Indestructibility properties of Ramsey and Ramsey-like cardinals.Victoria Gitman & Thomas A. Johnstone - 2022 - Annals of Pure and Applied Logic 173 (6):103106.
    Download  
     
    Export citation  
     
    Bookmark  
  • Club stationary reflection and other combinatorial principles at ℵ+2.Thomas Gilton & Šárka Stejskalová - 2025 - Annals of Pure and Applied Logic 176 (1):103489.
    Download  
     
    Export citation  
     
    Bookmark  
  • On supercompactness and the continuum function.Brent Cody & Menachem Magidor - 2014 - Annals of Pure and Applied Logic 165 (2):620-630.
    Given a cardinal κ that is λ-supercompact for some regular cardinal λ⩾κ and assuming GCH, we show that one can force the continuum function to agree with any function F:[κ,λ]∩REG→CARD satisfying ∀α,β∈domα F. Our argument extends Woodinʼs technique of surgically modifying a generic filter to a new case: Woodinʼs key lemma applies when modifications are done on the range of j, whereas our argument uses a new key lemma to handle modifications done off of the range of j on the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizations of the weakly compact ideal on Pλ.Brent Cody - 2020 - Annals of Pure and Applied Logic 171 (6):102791.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Cohen and Prikry Forcing Notions.Tom Benhamou & Moti Gitik - 2024 - Journal of Symbolic Logic 89 (2):858-904.
    Abstract(1)We show that it is possible to add $\kappa ^+$ -Cohen subsets to $\kappa $ with a Prikry forcing over $\kappa $. This answers a question from [9].(2)A strengthening of non-Galvin property is introduced. It is shown to be consistent using a single measurable cardinal which improves a previous result by S. Garti, S. Shelah, and the first author [5].(3)A situation with Extender-based Prikry forcings is examined. This relates to a question of H. Woodin.
    Download  
     
    Export citation  
     
    Bookmark