- Local saturation of the non-stationary ideal over Pκλ.Toshimichi Usuba - 2007 - Annals of Pure and Applied Logic 149 (1-3):100-123.details
|
|
Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.details
|
|
Universal partial indestructibility and strong compactness.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (5):524-531.details
|
|
Characterizing strong compactness via strongness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (4):375.details
|
|
Inner-Model Reflection Principles.Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins, Jonas Reitz & Ralf Schindler - 2020 - Studia Logica 108 (3):573-595.details
|
|
Indestructible strong compactness and level by level inequivalence.Arthur W. Apter - 2013 - Mathematical Logic Quarterly 59 (4-5):371-377.details
|
|
Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.details
|
|
Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.details
|
|
The failure of GCH at a degree of supercompactness.Brent Cody - 2012 - Mathematical Logic Quarterly 58 (1):83-94.details
|
|
Coding into HOD via normal measures with some applications.Arthur W. Apter & Shoshana Friedman - 2011 - Mathematical Logic Quarterly 57 (4):366-372.details
|
|
Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.details
|
|
Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.details
|
|
Hierarchies of forcing axioms I.Itay Neeman & Ernest Schimmerling - 2008 - Journal of Symbolic Logic 73 (1):343-362.details
|
|
An equiconsistency for universal indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.details
|
|
The weakly compact reflection principle need not imply a high order of weak compactness.Brent Cody & Hiroshi Sakai - 2020 - Archive for Mathematical Logic 59 (1-2):179-196.details
|
|
Diamond (on the regulars) can fail at any strongly unfoldable cardinal.Mirna Džamonja & Joel David Hamkins - 2006 - Annals of Pure and Applied Logic 144 (1-3):83-95.details
|
|
Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.details
|
|
Hierarchies of forcing axioms, the continuum hypothesis and square principles.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):256-282.details
|
|
Strongly uplifting cardinals and the boldface resurrection axioms.Joel David Hamkins & Thomas A. Johnstone - 2017 - Archive for Mathematical Logic 56 (7-8):1115-1133.details
|
|
The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.details
|
|
Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.details
|
|
Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.details
|
|
Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.details
|
|
Blowing up the power set of the least measurable.Arthur W. Apter & James Cummings - 2002 - Journal of Symbolic Logic 67 (3):915-923.details
|
|
A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.details
|
|
The tree property at the ℵ 2 n 's and the failure of SCH at ℵ ω.Sy-David Friedman & Radek Honzik - 2015 - Annals of Pure and Applied Logic 166 (4):526-552.details
|
|
Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.details
|
|
More on the Preservation of Large Cardinals Under Class Forcing.Joan Bagaria & Alejandro Poveda - 2023 - Journal of Symbolic Logic 88 (1):290-323.details
|
|
Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.details
|
|
Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.details
|
|
Indestructibility and the linearity of the Mitchell ordering.Arthur W. Apter - 2024 - Archive for Mathematical Logic 63 (3):473-482.details
|
|
(15 other versions)2007 European Summer Meeting of the Association for Symbolic Logic: Logic Colloquium '07.Steffen Lempp - 2008 - Bulletin of Symbolic Logic 14 (1):123-159.details
|
|
Identity crises and strong compactness III: Woodin cardinals. [REVIEW]Arthur W. Apter & Grigor Sargsyan - 2006 - Archive for Mathematical Logic 45 (3):307-322.details
|
|
Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.details
|
|
Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.details
|
|
A universal indestructibility theorem compatible with level by level equivalence.Arthur W. Apter - 2015 - Archive for Mathematical Logic 54 (3-4):463-470.details
|
|
Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.details
|
|
Universal indestructibility for degrees of supercompactness and strongly compact cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.details
|
|
Large cardinals and definable well-orders on the universe.Andrew D. Brooke-Taylor - 2009 - Journal of Symbolic Logic 74 (2):641-654.details
|
|
Fusion and large cardinal preservation.Sy-David Friedman, Radek Honzik & Lyubomyr Zdomskyy - 2013 - Annals of Pure and Applied Logic 164 (12):1247-1273.details
|
|
On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.details
|
|
Indestructibility when the first two measurable cardinals are strongly compact.Arthur W. Apter - 2022 - Journal of Symbolic Logic 87 (1):214-227.details
|
|
Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence.Arthur W. Apter - 2006 - Mathematical Logic Quarterly 52 (5):457-463.details
|
|
Strongly unfoldable cardinals made indestructible.Thomas A. Johnstone - 2008 - Journal of Symbolic Logic 73 (4):1215-1248.details
|
|
Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.details
|
|
Indestructibility properties of Ramsey and Ramsey-like cardinals.Victoria Gitman & Thomas A. Johnstone - 2022 - Annals of Pure and Applied Logic 173 (6):103106.details
|
|
Club stationary reflection and other combinatorial principles at ℵ+2.Thomas Gilton & Šárka Stejskalová - 2025 - Annals of Pure and Applied Logic 176 (1):103489.details
|
|
On supercompactness and the continuum function.Brent Cody & Menachem Magidor - 2014 - Annals of Pure and Applied Logic 165 (2):620-630.details
|
|
Characterizations of the weakly compact ideal on Pλ.Brent Cody - 2020 - Annals of Pure and Applied Logic 171 (6):102791.details
|
|
On Cohen and Prikry Forcing Notions.Tom Benhamou & Moti Gitik - 2024 - Journal of Symbolic Logic 89 (2):858-904.details
|
|