Switch to: Citations

Add references

You must login to add references.
  1. Finitary reducibility on equivalence relations.Russell Miller & Keng Meng Ng - 2016 - Journal of Symbolic Logic 81 (4):1225-1254.
    We introduce the notion of finitary computable reducibility on equivalence relations on the domainω. This is a weakening of the usual notion of computable reducibility, and we show it to be distinct in several ways. In particular, whereas no equivalence relation can be${\rm{\Pi }}_{n + 2}^0$-complete under computable reducibility, we show that, for everyn, there does exist a natural equivalence relation which is${\rm{\Pi }}_{n + 2}^0$-complete under finitary reducibility. We also show that our hierarchy of finitary reducibilities does not collapse, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Universal computably enumerable equivalence relations.Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro & Andrea Sorbi - 2014 - Journal of Symbolic Logic 79 (1):60-88.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Complexity of equivalence relations and preorders from computability theory.Egor Ianovski, Russell Miller, Keng Meng Ng & André Nies - 2014 - Journal of Symbolic Logic 79 (3):859-881.
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔fS f].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes polynomial timem-reducibility on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Classifying positive equivalence relations.Claudio Bernardi & Andrea Sorbi - 1983 - Journal of Symbolic Logic 48 (3):529-538.
    Given two (positive) equivalence relations ∼ 1 , ∼ 2 on the set ω of natural numbers, we say that ∼ 1 is m-reducible to ∼ 2 if there exists a total recursive function h such that for every x, y ∈ ω, we have $x \sim_1 y \operatorname{iff} hx \sim_2 hy$ . We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a "uniformity property" holds). This (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • A borel reducibility theory for classes of countable structures.Harvey Friedman & Lee Stanley - 1989 - Journal of Symbolic Logic 54 (3):894-914.
    We introduce a reducibility preordering between classes of countable structures, each class containing only structures of a given similarity type (which is allowed to vary from class to class). Though we sometimes work in a slightly larger context, we are principally concerned with the case where each class is an invariant Borel class (i.e. the class of all models, with underlying set $= \omega$, of an $L_{\omega_1\omega}$ sentence; from this point of view, the reducibility can be thought of as a (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations