Switch to: References

Add citations

You must login to add citations.
  1. Categoricity Spectra for Polymodal Algebras.Nikolay Bazhenov - 2016 - Studia Logica 104 (6):1083-1097.
    We investigate effective categoricity for polymodal algebras. We prove that the class of polymodal algebras is complete with respect to degree spectra of nontrivial structures, effective dimensions, expansion by constants, and degree spectra of relations. In particular, this implies that every categoricity spectrum is the categoricity spectrum of a polymodal algebra.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Classifying equivalence relations in the Ershov hierarchy.Nikolay Bazhenov, Manat Mustafa, Luca San Mauro, Andrea Sorbi & Mars Yamaleev - 2020 - Archive for Mathematical Logic 59 (7-8):835-864.
    Computably enumerable equivalence relations received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility \. This gives rise to a rich degree structure. In this paper, we lift the study of c-degrees to the \ case. In doing so, we rely on the Ershov hierarchy. For any notation a for a non-zero computable ordinal, we prove several algebraic properties of the degree structure induced by \ on the \ equivalence relations. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reducibility of Equivalence Relations Arising from Nonstationary Ideals under Large Cardinal Assumptions.David Asperó, Tapani Hyttinen, Vadim Kulikov & Miguel Moreno - 2019 - Notre Dame Journal of Formal Logic 60 (4):665-682.
    Working under large cardinal assumptions such as supercompactness, we study the Borel reducibility between equivalence relations modulo restrictions of the nonstationary ideal on some fixed cardinal κ. We show the consistency of Eλ-clubλ++,λ++, the relation of equivalence modulo the nonstationary ideal restricted to Sλλ++ in the space λ++, being continuously reducible to Eλ+-club2,λ++, the relation of equivalence modulo the nonstationary ideal restricted to Sλ+λ++ in the space 2λ++. Then we show that for κ ineffable Ereg2,κ, the relation of equivalence modulo (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Investigating the Computable Friedman–Stanley Jump.Uri Andrews & Luca San Mauro - 2024 - Journal of Symbolic Logic 89 (2):918-944.
    The Friedman–Stanley jump, extensively studied by descriptive set theorists, is a fundamental tool for gauging the complexity of Borel isomorphism relations. This paper focuses on a natural computable analog of this jump operator for equivalence relations on $\omega $, written ${\dotplus }$, recently introduced by Clemens, Coskey, and Krakoff. We offer a thorough analysis of the computable Friedman–Stanley jump and its connections with the hierarchy of countable equivalence relations under the computable reducibility $\leq _c$. In particular, we show that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (15 other versions)2010 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium '10.Uri Abraham & Ted Slaman - 2011 - Bulletin of Symbolic Logic 17 (2):272-329.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the complexity of categoricity in computable structures.Walker M. White - 2003 - Mathematical Logic Quarterly 49 (6):603.
    We investigate the computational complexity the class of Γ-categorical computable structures. We show that hyperarithmetic categoricity is Π11-complete, while computable categoricity is Π04-hard.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Superrigidity and countable Borel equivalence relations.Simon Thomas - 2003 - Annals of Pure and Applied Logic 120 (1-3):237-262.
    We formulate a Borel version of a corollary of Furman's superrigidity theorem for orbit equivalence and present a number of applications to the theory of countable Borel equivalence relations. In particular, we prove that the orbit equivalence relations arising from the natural actions of on the projective planes over the various p-adic fields are pairwise incomparable with respect to Borel reducibility.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the complexity of the classification problem for torsion-free Abelian groups of finite rank.Simon Thomas - 2001 - Bulletin of Symbolic Logic 7 (3):329-344.
    In this paper, we shall discuss some recent contributions to the project [15, 14, 2, 18, 22, 23] of explaining why no satisfactory system of complete invariants has yet been found for the torsion-free abelian groups of finite rank n ≥ 2. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n-dimensional vector space ℚn which contain n linearly independent elements. Thus the collection of torsion-free abelian groups of rank at (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Complete groups are complete co-analytic.Simon Thomas - 2018 - Archive for Mathematical Logic 57 (5-6):601-606.
    The set of complete groups is a complete co-analytic subset of the standard Borel space of countably infinite groups.
    Download  
     
    Export citation  
     
    Bookmark  
  • A descriptive view of combinatorial group theory.Simon Thomas - 2011 - Bulletin of Symbolic Logic 17 (2):252-264.
    In this paper, we will prove the inevitable non-uniformity of two constructions from combinatorial group theory related to the word problem for finitely generated groups and the Higman—Neumann—Neumann Embedding Theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  • Vaught’s Conjecture for Theories of Discretely Ordered Structures.Predrag Tanović - 2024 - Notre Dame Journal of Formal Logic 65 (3):247-257.
    Let T be a countable complete first-order theory with a definable, infinite, discrete linear order. We prove that T has continuum-many countable models. The proof is purely first order, but it raises the question of Borel completeness of T.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Old Friend Revisited: Countable Models of ω-Stable Theories.Michael C. Laskowski - 2007 - Notre Dame Journal of Formal Logic 48 (1):133-141.
    We work in the context of ω-stable theories. We obtain a natural, algebraic equivalent of ENI-NDOP and discuss recent joint proofs with Shelah that if an ω-stable theory has either ENI-DOP or is ENI-NDOP and is ENI-deep, then the set of models of T with universe ω is Borel complete.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classifying Invariants for E1: A Tail of a Generic Real.Assaf Shani - 2024 - Notre Dame Journal of Formal Logic 65 (3):333-356.
    Let E be an analytic equivalence relation on a Polish space. We introduce a framework for studying the possible “reasonable” complete classifications and the complexity of possible classifying invariants for E, such that: (1) the standard results and intuitions regarding classifications by countable structures are preserved in this framework; (2) this framework respects Borel reducibility; and (3) this framework allows for a precise study of the possible invariants of certain equivalence relations which are not classifiable by countable structures, such as (...))
    Download  
     
    Export citation  
     
    Bookmark  
  • Classifying singularities up to analytic extensions of scalars is smooth.Hans Schoutens - 2011 - Annals of Pure and Applied Logic 162 (10):836-852.
    The singularity space consists of all germs , with X a Noetherian scheme and x a point, where we identify two such germs if they become the same after an analytic extension of scalars. This is a complete, separable space for the metric given by the order to which jets agree after base change. In the terminology of descriptive set-theory, the classification of singularities up to analytic extensions of scalars is a smooth problem. Over , the following two classification problems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Borel reducibility and classification of von Neumann algebras.Román Sasyk & Asger Törnquist - 2009 - Bulletin of Symbolic Logic 15 (2):169-183.
    We announce some new results regarding the classification problem for separable von Neumann algebras. Our results are obtained by applying the notion of Borel reducibility and Hjorth's theory of turbulence to the isomorphism relation for separable von Neumann algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • The complexity of isomorphism for complete theories of linear orders with unary predicates.Richard Rast - 2017 - Archive for Mathematical Logic 56 (3-4):289-307.
    Suppose A is a linear order, possibly with countably many unary predicates added. We classify the isomorphism relation for countable models of Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Th}$$\end{document} up to Borel bi-reducibility, showing there are exactly five possibilities and characterizing exactly when each can occur in simple model-theoretic terms. We show that if the language is finite, then the theory is ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _0$$\end{document}-categorical or Borel complete; this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Degree Structure of Equivalence Relations Under Computable Reducibility.Keng Meng Ng & Hongyuan Yu - 2019 - Notre Dame Journal of Formal Logic 60 (4):733-761.
    We study the degree structure of the ω-c.e., n-c.e., and Π10 equivalence relations under the computable many-one reducibility. In particular, we investigate for each of these classes of degrees the most basic questions about the structure of the partial order. We prove the existence of the greatest element for the ω-c.e. and n-computably enumerable equivalence relations. We provide computable enumerations of the degrees of ω-c.e., n-c.e., and Π10 equivalence relations. We prove that for all the degree classes considered, upward density (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The descriptive set-theoretical complexity of the embeddability relation on models of large size.Luca Motto Ros - 2013 - Annals of Pure and Applied Logic 164 (12):1454-1492.
    We show that if κ is a weakly compact cardinal then the embeddability relation on trees of size κ is invariantly universal. This means that for every analytic quasi-order R on the generalized Cantor space View the MathML source there is an Lκ+κ-sentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bi-reducible to R. In particular, this implies that the relation of embeddability on trees of size κ is complete for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Most(?) Theories Have Borel Complete Reducts.Michael C. Laskowski & Douglas S. Ulrich - 2023 - Journal of Symbolic Logic 88 (1):418-426.
    We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if $Th(M)$ is not small, then $M^{eq}$ has a Borel complete reduct, and if a theory T is not $\omega $ -stable, then the elementary diagram of some countable model of T has a Borel complete reduct.
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparing Borel Reducibility and Depth of an ω-Stable Theory.Martin Koerwien - 2009 - Notre Dame Journal of Formal Logic 50 (4):365-380.
    In "A proof of Vaught's conjecture for ω-stable theories," the notions of ENI-NDOP and eni-depth have been introduced, which are variants of the notions of NDOP and depth known from Shelah's classification theory. First, we show that for an ω-stable first-order complete theory, ENI-NDOP allows tree decompositions of countable models. Then we discuss the relationship between eni-depth and the complexity of the isomorphism relation for countable models of such a theory in terms of Borel reducibility as introduced by Friedman and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The complexity of topological conjugacy of pointed Cantor minimal systems.Burak Kaya - 2017 - Archive for Mathematical Logic 56 (3-4):215-235.
    In this paper, we analyze the complexity of topological conjugacy of pointed Cantor minimal systems from the point of view of descriptive set theory. We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation ΔR+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathbb {R}}^+$$\end{document} on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{{\mathbb {N}}}$$\end{document} defined by xΔR+y⇔{xi:i∈N}={yi:i∈N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On ‐complete equivalence relations on the generalized Baire space.Tapani Hyttinen & Vadim Kulikov - 2015 - Mathematical Logic Quarterly 61 (1-2):66-81.
    Working with uncountable structures of fixed cardinality, we investigate the complexity of certain equivalence relations and show that if, then many of them are ‐complete, in particular the isomorphism relation of dense linear orders. Then we show that it is undecidable in whether or not the isomorphism relation of a certain well behaved theory (stable, NDOP, NOTOP) is ‐complete (it is, if, but can be forced not to be).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the reducibility of isomorphism relations.Tapani Hyttinen & Miguel Moreno - 2017 - Mathematical Logic Quarterly 63 (3-4):175-192.
    We study the Borel reducibility of isomorphism relations in the generalized Baire space. In the main result we show for inaccessible κ, that if T is a classifiable theory and is stable with the orthogonal chain property (OCP), then the isomorphism of models of T is Borel reducible to the isomorphism of models of.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Borel equivalence relations and classifications of countable models.Greg Hjorth & Alexander S. Kechris - 1996 - Annals of Pure and Applied Logic 82 (3):221-272.
    Using the theory of Borel equivalence relations we analyze the isomorphism relation on the countable models of a theory and develop a framework for measuring the complexity of possible complete invariants for isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Borel equivalence relations induced by actions of the symmetric group.Greg Hjorth, Alexander S. Kechris & Alain Louveau - 1998 - Annals of Pure and Applied Logic 92 (1):63-112.
    We consider Borel equivalence relations E induced by actions of the infinite symmetric group, or equivalently the isomorphism relation on classes of countable models of bounded Scott rank. We relate the descriptive complexity of the equivalence relation to the nature of its complete invariants. A typical theorem is that E is potentially Π03 iff the invariants are countable sets of reals, it is potentially Π04 iff the invariants are countable sets of countable sets of reals, and so on. The proofs (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Degree spectra and computable dimensions in algebraic structures.Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore & Arkadii M. Slinko - 2002 - Annals of Pure and Applied Logic 115 (1-3):71-113.
    Whenever a structure with a particularly interesting computability-theoretic property is found, it is natural to ask whether similar examples can be found within well-known classes of algebraic structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this question is to adapt the original proof to the new setting. However, this can be an unnecessary duplication of effort, and lacks generality. Another method is to code the original structure into a structure in the given (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • There is no classification of the decidably presentable structures.Matthew Harrison-Trainor - 2018 - Journal of Mathematical Logic 18 (2):1850010.
    A computable structure [Formula: see text] is decidable if, given a formula [Formula: see text] of elementary first-order logic, and a tuple [Formula: see text], we have a decision procedure to decide whether [Formula: see text] holds of [Formula: see text]. We show that there is no reasonable classification of the decidably presentable structures. Formally, we show that the index set of the computable structures with decidable presentations is [Formula: see text]-complete. We also show that for each [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the isomorphism problem for some classes of computable algebraic structures.Valentina S. Harizanov, Steffen Lempp, Charles F. D. McCoy, Andrei S. Morozov & Reed Solomon - 2022 - Archive for Mathematical Logic 61 (5):813-825.
    We establish that the isomorphism problem for the classes of computable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups is \-complete, which is as complicated as possible. The method we use is based on uniform effective interpretations of computable binary relations into computable structures from the corresponding algebraic classes.
    Download  
     
    Export citation  
     
    Bookmark  
  • Continuous Logic and Borel Equivalence Relations.Andreas Hallbäck, Maciej Malicki & Todor Tsankov - 2023 - Journal of Symbolic Logic 88 (4):1725-1752.
    We study the complexity of isomorphism of classes of metric structures using methods from infinitary continuous logic. For Borel classes of locally compact structures, we prove that if the equivalence relation of isomorphism is potentially $\mathbf {\Sigma }^0_2$, then it is essentially countable. We also provide an equivalent model-theoretic condition that is easy to check in practice. This theorem is a common generalization of a result of Hjorth about pseudo-connected metric spaces and a result of Hjorth–Kechris about discrete structures. As (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scott Sentence Complexities of Linear Orderings.David Gonzalez & Dino Rossegger - forthcoming - Journal of Symbolic Logic:1-30.
    We study possible Scott sentence complexities of linear orderings using two approaches. First, we investigate the effect of the Friedman–Stanley embedding on Scott sentence complexity and show that it only preserves $\Pi ^{\mathrm {in}}_{\alpha }$ complexities. We then take a more direct approach and exhibit linear orderings of all Scott sentence complexities except $\Sigma ^{\mathrm {in}}_{3}$ and $\Sigma ^{\mathrm {in}}_{\lambda +1}$ for $\lambda $ a limit ordinal. We show that the former cannot be the Scott sentence complexity of a linear (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Analytic equivalence relations and bi-embeddability.Sy-David Friedman & Luca Motto Ros - 2011 - Journal of Symbolic Logic 76 (1):243 - 266.
    Louveau and Rosendal [5] have shown that the relation of bi-embeddability for countable graphs as well as for many other natural classes of countable structures is complete under Borel reducibility for analytic equivalence relations. This is in strong contrast to the case of the isomorphism relation, which as an equivalence relation on graphs (or on any class of countable structures consisting of the models of a sentence of L ω ₁ ω ) is far from complete (see [5, 2]). In (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Isomorphism relations on computable structures.Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight, Charles Mccoy & Antonio Montalbán - 2012 - Journal of Symbolic Logic 77 (1):122-132.
    We study the complexity of the isomorphism relation on classes of computable structures. We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation on many familiar classes in the context of all ${\mathrm{\Sigma }}_{1}^{1}$ equivalence relations on hyperarithmetical subsets of ω.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Σ1 1 equivalence relations over the natural numbers.Ekaterina B. Fokina & Sy-David Friedman - 2012 - Mathematical Logic Quarterly 58 (1-2):113-124.
    We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ11 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Basis problem for turbulent actions I: Tsirelson submeasures.Ilijas Farah - 2001 - Annals of Pure and Applied Logic 108 (1-3):189-203.
    We use modified Tsirelson's spaces to prove that there is no finite basis for turbulent Polish group actions. This answers a question of Hjorth and Kechris 329–346; Hjorth, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Section 3.4.3).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The conjugacy problem for automorphism groups of countable homogeneous structures.Samuel Coskey & Paul Ellis - 2016 - Mathematical Logic Quarterly 62 (6):580-589.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The complexity of classification problems for models of arithmetic.Samuel Coskey & Roman Kossak - 2010 - Bulletin of Symbolic Logic 16 (3):345-358.
    We observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The conjugacy problem for the automorphism group of the random graph.Samuel Coskey, Paul Ellis & Scott Schneider - 2011 - Archive for Mathematical Logic 50 (1-2):215-221.
    We prove that the conjugacy problem for the automorphism group of the random graph is Borel complete, and discuss the analogous problem for some other countably categorical structures.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Infinite Time Decidable Equivalence Relation Theory.Samuel Coskey & Joel David Hamkins - 2011 - Notre Dame Journal of Formal Logic 52 (2):203-228.
    We introduce an analogue of the theory of Borel equivalence relations in which we study equivalence relations that are decidable by an infinite time Turing machine. The Borel reductions are replaced by the more general class of infinite time computable functions. Many basic aspects of the classical theory remain intact, with the added bonus that it becomes sensible to study some special equivalence relations whose complexity is beyond Borel or even analytic. We also introduce an infinite time generalization of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The classification of countable models of set theory.John Clemens, Samuel Coskey & Samuel Dworetzky - 2020 - Mathematical Logic Quarterly 66 (2):182-189.
    We study the complexity of the classification problem for countable models of set theory (). We prove that the classification of arbitrary countable models of is Borel complete, meaning that it is as complex as it can conceivably be. We then give partial results concerning the classification of countable well‐founded models of.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • New jump operators on equivalence relations.John D. Clemens & Samuel Coskey - 2022 - Journal of Mathematical Logic 22 (3).
    We introduce a new family of jump operators on Borel equivalence relations; specifically, for each countable group [Formula: see text] we introduce the [Formula: see text]-jump. We study the elementary properties of the [Formula: see text]-jumps and compare them with other previously studied jump operators. One of our main results is to establish that for many groups [Formula: see text], the [Formula: see text]-jump is proper in the sense that for any Borel equivalence relation [Formula: see text] the [Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Isometry of Polish metric spaces.John D. Clemens - 2012 - Annals of Pure and Applied Logic 163 (9):1196-1209.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Isomorphism of Homogeneous Structures.John D. Clemens - 2009 - Notre Dame Journal of Formal Logic 50 (1):1-22.
    We consider the complexity of the isomorphism relation on countable first-order structures with transitive automorphism groups. We use the theory of Borel reducibility of equivalence relations to show that the isomorphism problem for vertex-transitive graphs is as complicated as the isomorphism problem for arbitrary graphs and determine for which first-order languages the isomorphism problem for transitive countable structures is as complicated as it is for arbitrary countable structures. We then use these results to characterize the complexity of the isometry relation (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computable Reducibility of Equivalence Relations and an Effective Jump Operator.John D. Clemens, Samuel Coskey & Gianni Krakoff - forthcoming - Journal of Symbolic Logic:1-22.
    We introduce the computable FS-jump, an analog of the classical Friedman–Stanley jump in the context of equivalence relations on the natural numbers. We prove that the computable FS-jump is proper with respect to computable reducibility. We then study the effect of the computable FS-jump on computably enumerable equivalence relations (ceers).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Polish metric spaces with fixed distance set.Riccardo Camerlo, Alberto Marcone & Luca Motto Ros - 2020 - Annals of Pure and Applied Logic 171 (10):102832.
    We study Polish spaces for which a set of possible distances $A \subseteq R^+$ is fixed in advance. We determine, depending on the properties of A, the complexity of the collection of all Polish metric spaces with distances in A, obtaining also example of sets in some Wadge classes where not many natural examples are known. Moreover we describe the properties that A must have in order that all Polish spaces with distances in that set belong to a given class, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Uncountable structures are not classifiable up to bi-embeddability.Filippo Calderoni, Heike Mildenberger & Luca Motto Ros - 2019 - Journal of Mathematical Logic 20 (1):2050001.
    Answering some of the main questions from [L. Motto Ros, The descriptive set-theoretical complexity of the embeddability relation on models of large size, Ann. Pure Appl. Logic164(12) (2013) 1454–1492], we show that whenever κ is a cardinal satisfying κ<κ=κ>ω, then the embeddability relation between κ-sized structures is strongly invariantly universal, and hence complete for (κ-)analytic quasi-orders. We also prove that in the above result we can further restrict our attention to various natural classes of structures, including (generalized) trees, graphs, or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The isomorphism problem for classes of computable fields.Wesley Calvert - 2004 - Archive for Mathematical Logic 43 (3):327-336.
    Theories of classification distinguish classes with some good structure theorem from those for which none is possible. Some classes (dense linear orders, for instance) are non-classifiable in general, but are classifiable when we consider only countable members. This paper explores such a notion for classes of computable structures by working out several examples. One motivation is to see whether some classes whose set of countable members is very complex become classifiable when we consider only computable members. We follow recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Categoricity of computable infinitary theories.W. Calvert, S. S. Goncharov, J. F. Knight & Jessica Millar - 2009 - Archive for Mathematical Logic 48 (1):25-38.
    Computable structures of Scott rank ${\omega_1^{CK}}$ are an important boundary case for structural complexity. While every countable structure is determined, up to isomorphism, by a sentence of ${\mathcal{L}_{\omega_1 \omega}}$ , this sentence may not be computable. We give examples, in several familiar classes of structures, of computable structures with Scott rank ${\omega_1^{CK}}$ whose computable infinitary theories are each ${\aleph_0}$ -categorical. General conditions are given, covering many known methods for constructing computable structures with Scott rank ${\omega_1^{CK}}$ , which guarantee that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The prospects for mathematical logic in the twenty-first century.Samuel R. Buss, Alexander S. Kechris, Anand Pillay & Richard A. Shore - 2001 - Bulletin of Symbolic Logic 7 (2):169-196.
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.
    Download  
     
    Export citation  
     
    Bookmark   10 citations