Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Working below a low2 recursively enumerably degree.Richard A. Shore & Theodore A. Slaman - 1990 - Archive for Mathematical Logic 29 (3):201-211.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On homogeneity and definability in the first-order theory of the Turing degrees.Richard A. Shore - 1982 - Journal of Symbolic Logic 47 (1):8-16.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A minimal pair of recursively enumerable degrees.C. E. M. Yates - 1966 - Journal of Symbolic Logic 31 (2):159-168.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • A recursively enumerable degree which will not split over all lesser ones.Alistair H. Lachlan - 1976 - Annals of Mathematical Logic 9 (4):307.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Gerald E. Sacks. The recursively enumerable degrees are dense. Annals of mathematics, ser. 2 vol. 80 (1964), pp. 300–312. [REVIEW]Gerald E. Sacks - 1969 - Journal of Symbolic Logic 34 (2):294-295.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)The impossibility of finding relative complements for recursively enumerable degrees.A. H. Lachlan - 1966 - Journal of Symbolic Logic 31 (3):434-454.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Lattice nonembeddings and initial segments of the recursively enumerable degrees.Rod Downey - 1990 - Annals of Pure and Applied Logic 49 (2):97-119.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Recursive Enumerability and the Jump Operator.Gerald E. Sacks - 1964 - Journal of Symbolic Logic 29 (4):204-204.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations