Switch to: Citations

Add references

You must login to add references.
  1. Inner models with many Woodin cardinals.J. R. Steel - 1993 - Annals of Pure and Applied Logic 65 (2):185-209.
    We extend the theory of “Fine structure and iteration trees” to models having more than one Woodin cardinal.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Optimal proofs of determinacy.Itay Neeman - 1995 - Bulletin of Symbolic Logic 1 (3):327-339.
    In this paper I shall present a method for proving determinacy from large cardinals which, in many cases, seems to yield optimal results. One of the main applications extends theorems of Martin, Steel and Woodin about determinacy within the projective hierarchy. The method can also be used to give a new proof of Woodin's theorem about determinacy in L.The reason we look for optimal determinacy proofs is not only vanity. Such proofs serve to tighten the connection between large cardinals and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Combinatorial properties of Hechler forcing.Jörg Brendle, Haim Judah & Saharon Shelah - 1992 - Annals of Pure and Applied Logic 58 (3):185-199.
    Brendle, J., H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Annals of Pure and Applied Logic 59 185–199. Using a notion of rank for Hechler forcing we show: assuming ωV1 = ωL1, there is no real in V[d] which is eventually different from the reals in L[ d], where d is Hechler over V; adding one Hechler real makes the invariants on the left-hand side of Cichoń's diagram equal ω1 and those on the right-hand side equal 2ω and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Bounding and Dominating Number of Families of Functions on ω.Claude Laflamme - 1994 - Mathematical Logic Quarterly 40 (2):207-223.
    We pursue the study of families of functions on the natural numbers, with emphasis here on the bounded families. The situation being more complicated than the unbounded case, we attack the problem by classifying the families according to their bounding and dominating numbers, the traditional scheme for gaps. Many open questions remain.
    Download  
     
    Export citation  
     
    Bookmark   1 citation