Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1998 - Philosophia Mathematica 6 (3):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • The derivation-indicator view of mathematical practice.Jody Azzouni - 2004 - Philosophia Mathematica 12 (2):81-106.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Tracking Reason: Proof, Consequence, and Truth.Jody Azzouni - 2005 - Oxford, England: Oup Usa.
    When ordinary people - mathematicians among them - take something to follow from something else, they are exposing the backbone of our self-ascribed ability to reason. Jody Azzouni investigates the connection between that ordinary notion of consequence and the formal analogues invented by logicians. One claim of the book is that, despite our apparent intuitive grasp of consequence, we do not introspect rules by which we reason, nor do we grasp the scope and range of the domain, as it were, (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Some Proposals for Reviving the Philosophy of Mathematics.Reuben Hersh - 1983 - Journal of Symbolic Logic 48 (3):871-872.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Book notes. [REVIEW]F. J. - 1975 - Philosophia Mathematica (1):81-82.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inquiry into Meaning and Truth.R. S. D. Thomas - 1990 - Philosophia Mathematica (1-2):73-87.
    Download  
     
    Export citation  
     
    Bookmark   4 citations