Switch to: Citations

Add references

You must login to add references.
  1. Finite-to-one maps.Thomas Forster - 2003 - Journal of Symbolic Logic 68 (4):1251-1253.
    It is shown in ZF (without choice) that if there is a finite-to-one map P(X) → X, then X is finite.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Note on Strongly Almost Disjoint Families.Guozhen Shen - 2020 - Notre Dame Journal of Formal Logic 61 (2):227-231.
    For a set M, let |M| denote the cardinality of M. A family F is called strongly almost disjoint if there is an n∈ω such that |A∩B|<n for any two distinct elements A, B of F. It is shown in ZF (without the axiom of choice) that, for all infinite sets M and all strongly almost disjoint families F⊆P(M), |F|<|P(M)| and there are no finite-to-one functions from P(M) into F, where P(M) denotes the power set of M.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Factorials of infinite cardinals in zf part II: Consistency results.Guozhen Shen & Jiachen Yuan - 2020 - Journal of Symbolic Logic 85 (1):244-270.
    For a set x, let S(x) be the set of all permutations of x. We prove by the method of permutation models that the following statements are consistent with ZF: (1) There is an infinite set x such that |p(x)|<|S(x)|<|seq^1-1(x)|<|seq(x)|, where p(x) is the powerset of x, seq(x) is the set of all finite sequences of elements of x, and seq^1-1(x) is the set of all finite sequences of elements of x without repetition. (2) There is a Dedekind infinite set (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A weird relation between two cardinals.Lorenz Halbeisen - 2018 - Archive for Mathematical Logic 57 (5-6):593-599.
    For a set M, let \\) denote the set of all finite sequences which can be formed with elements of M, and let \ denote the set of all 2-element subsets of M. Furthermore, for a set A, let Open image in new window denote the cardinality of A. It will be shown that the following statement is consistent with Zermelo–Fraenkel Set Theory \: There exists a set M such that Open image in new window and no function Open image (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Consequences of arithmetic for set theory.Lorenz Halbeisen & Saharon Shelah - 1994 - Journal of Symbolic Logic 59 (1):30-40.
    In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider $\operatorname{seq}^{1 - 1}(A)$ , the set of all sequences of A without repetition. We compare $|\operatorname{seq}^{1 - 1}(A)|$ , the cardinality of this set, to |P(A)|, the cardinality of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Generalizations of Cantor's theorem in ZF.Guozhen Shen - 2017 - Mathematical Logic Quarterly 63 (5):428-436.
    A set x is Dedekind infinite if there is an injection from ω into x; otherwise x is Dedekind finite. A set x is power Dedekind infinite if math formula, the power set of x, is Dedekind infinite; otherwise x is power Dedekind finite. For a set x, let pdfin be the set of all power Dedekind finite subsets of x. In this paper, we prove in math formula two generalizations of Cantor's theorem : The first one is that for (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations