Switch to: Citations

Add references

You must login to add references.
  1. Zum intuitionistischen aussagenkalkül.K. Gödel - 1932 - Anzeiger der Akademie der Wissenschaften in Wien 69:65--66.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The logic of justification.Sergei Artemov - 2008 - Review of Symbolic Logic 1 (4):477-513.
    We describe a general logical framework, Justification Logic, for reasoning about epistemic justification. Justification Logic is based on classical propositional logic augmented by justification assertions t: F that read t is a justification for F. Justification Logic absorbs basic principles originating from both mainstream epistemology and the mathematical theory of proofs. It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state a general Correspondence Theorem showing that behind each epistemic modal logic, there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • A propositional calculus with denumerable matrix.Michael Dummett - 1959 - Journal of Symbolic Logic 24 (2):97-106.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Standard Gödel Modal Logics.Xavier Caicedo & Ricardo O. Rodriguez - 2010 - Studia Logica 94 (2):189-214.
    We prove strong completeness of the □-version and the ◊-version of a Gödel modal logic based on Kripke models where propositions at each world and the accessibility relation are both infinitely valued in the standard Gödel algebra [0,1]. Some asymmetries are revealed: validity in the first logic is reducible to the class of frames having two-valued accessibility relation and this logic does not enjoy the finite model property, while validity in the second logic requires truly fuzzy accessibility relations and this (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Decidability for some justification logics with negative introspection.Thomas Studer - 2013 - Journal of Symbolic Logic 78 (2):388-402.
    Justification logics are modal logics that include justifications for the agent's knowledge. So far, there are no decidability results available for justification logics with negative introspection. In this paper, we develop a novel model construction for such logics and show that justification logics with negative introspection are decidable for finite constant specifications.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Note on Strong Axiomatization of Gödel Justification Logic.Nicholas Pischke - 2020 - Studia Logica 108 (4):687-724.
    Justification logics are special kinds of modal logics which provide a framework for reasoning about epistemic justifications. For this, they extend classical boolean propositional logic by a family of necessity-style modal operators “t : ”, indexed over t by a corresponding set of justification terms, which thus explicitly encode the justification for the necessity assertion in the syntax. With these operators, one can therefore not only reason about modal effects on propositions but also about dynamics inside the justifications themselves. We (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logic with truth values in a linearly ordered Heyting algebra.Alfred Horn - 1969 - Journal of Symbolic Logic 34 (3):395-408.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Pavelka-style fuzzy justification logics.Meghdad Ghari - 2016 - Logic Journal of the IGPL 24 (5):743-773.
    Justification logics provide a framework for reasoning about justifications and evidence. In this article, we study a fuzzy variant of justification logics in which an agent’s justification for a belief has certainty degree between 0 and 1. We replace the classical base of justification logics with Hájek’s rational Pavelka logic. We introduce fuzzy possible world semantics with crisp accessibility relation and also single world models for our logics. We establish soundness and graded-style completeness for both kinds of semantics. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The logic of proofs, semantically.Melvin Fitting - 2005 - Annals of Pure and Applied Logic 132 (1):1-25.
    A new semantics is presented for the logic of proofs (LP), [1, 2], based on the intuition that it is a logic of explicit knowledge. This semantics is used to give new proofs of several basic results concerning LP. In particular, the realization of S4 into LP is established in a way that carefully examines and explicates the role of the + operator. Finally connections are made with the conventional approach, via soundness and completeness results.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Realizations and LP.Melvin Fitting - 2010 - Annals of Pure and Applied Logic 161 (3):368-387.
    LP can be seen as a logic of knowledge with justifications. See [S. Artemov, The logic of justification, The Review of Symbolic Logic 1 477–513] for a recent comprehensive survey of justification logics generally. Artemov’s Realization Theorem says justifications can be extracted from validities in the more conventional Hintikka-style logic of knowledge S4, in which they are not explicitly present. Justifications, however, are far from unique. There are many ways of realizing each theorem of S4 in the logic LP. If (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)A Syntactic Realization Theorem for Justification Logics.Kai Brünnler, Remo Goerschi & Roman Kuznets - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 39-58.
    Download  
     
    Export citation  
     
    Bookmark   2 citations