Switch to: Citations

Add references

You must login to add references.
  1. The undecidability of k-provability.Samuel Buss - 1991 - Annals of Pure and Applied Logic 53 (1):75-102.
    Buss, S.R., The undecidability of k-provability, Annals of Pure and Applied Logic 53 75-102. The k-provability problem is, given a first-order formula ø and an integer k, to determine if ø has a proof consisting of k or fewer lines. This paper shows that the k-provability problem for the sequent calculus is undecidable. Indeed, for every r.e. set X there is a formula ø and an integer k such that for all n,ø has a proof of k sequents if and (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The undecidability of k-provability.Samuel R. Buss - 1991 - Annals of Pure and Applied Logic 53 (1):75-102.
    Buss, S.R., The undecidability of k-provability, Annals of Pure and Applied Logic 53 75-102. The k-provability problem is, given a first-order formula ø and an integer k, to determine if ø has a proof consisting of k or fewer lines . This paper shows that the k-provability problem for the sequent calculus is undecidable. Indeed, for every r.e. set X there is a formula ø and an integer k such that for all n,ø has a proof of k sequents if (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • [Omnibus Review].Dag Prawitz - 1991 - Journal of Symbolic Logic 56 (3):1094-1096.
    Reviewed Works:Gaisi Takeuti, Proof Theory.Georg Kreisel, Proof Theory: Some Personal Recollections.Wolfram Pohlers, Contributions of the Schutte School in Munich to Proof Theory.Stephen G. Simpson, Subsystems of $\mathbf{Z}_2$ and Reverse Mathematics.Solomon Feferman, Proof Theory: A Personal Report.
    Download  
     
    Export citation  
     
    Bookmark   92 citations