Switch to: Citations

Add references

You must login to add references.
  1. Regularities and causality; generalizations and causal explanations.Jim Bogen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):397-420.
    Machamer, Darden, and Craver argue that causal explanations explain effects by describing the operations of the mechanisms which produce them. One of this paper’s aims is to take advantage of neglected resources of Mechanism to rethink the traditional idea that actual or counterfactual natural regularities are essential to the distinction between causal and non-causal co-occurrences, and that generalizations describing natural regularities are essential components of causal explanations. I think that causal productivity and regularity are by no means the same thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • (2 other versions)Counterfactuals.David Lewis - 1973 - Philosophy of Science 42 (3):341-344.
    Download  
     
    Export citation  
     
    Bookmark   1156 citations  
  • (1 other version)What Is a Mechanism? A Counterfactual Account.James Woodward - 2002 - Philosophy of Science 69 (S3):S366-S377.
    This paper presents a counterfactual account of what a mechanism is. Mechanisms consist of parts, the behavior of which conforms to generalizations that are invariant under interventions, and which are modular in the sense that it is possible in principle to change the behavior of one part independently of the others. Each of these features can be captured by the truth of certain counterfactuals.
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • (1 other version)The Structure of Science.Ernest Nagel - 1961 - Les Etudes Philosophiques 17 (2):275-275.
    Download  
     
    Export citation  
     
    Bookmark   885 citations  
  • (1 other version)Explaining the Brain.Carl F. Craver - 2007 - Oxford, GB: Oxford University Press.
    Carl F. Craver investigates what we are doing when we use neuroscience to explain what's going on in the brain. When does an explanation succeed and when does it fail? Craver offers explicit standards for successful explanation of the workings of the brain, on the basis of a systematic view about what neuroscientific explanations are.
    Download  
     
    Export citation  
     
    Bookmark   406 citations  
  • Ecological explanation between manipulation and mechanism description.Viorel Pâslaru - 2009 - Philosophy of Science 76 (5):821-837.
    James Woodward offers a conception of explanation and mechanism in terms of interventionist counterfactuals. Based on a case from ecology, I show that ecologists’ approach to that case satisfies Woodward’s conditions for explanation and mechanism, but his conception does not fully capture what ecologists view as explanatory. The new mechanistic philosophy likewise aims to describe central aspects of mechanisms, but I show that it is not sufficient to account for ecological mechanisms. I argue that in ecology explanation involves identification of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Aspects of scientific explanation.Carl G. Hempel - 1965 - In Carl Gustav Hempel (ed.), Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. New York: The Free Press. pp. 504.
    Download  
     
    Export citation  
     
    Bookmark   851 citations  
  • Causation in biology: Stability, specificity, and the choice of levels of explanation.James Woodward - 2010 - Biology and Philosophy 25 (3):287-318.
    This paper attempts to elucidate three characteristics of causal relationships that are important in biological contexts. Stability has to do with whether a causal relationship continues to hold under changes in background conditions. Proportionality has to do with whether changes in the state of the cause “line up” in the right way with changes in the state of the effect and with whether the cause and effect are characterized in a way that contains irrelevant detail. Specificity is connected both to (...)
    Download  
     
    Export citation  
     
    Bookmark   272 citations  
  • Allometries and scaling laws interpreted as laws: a reply to Elgin.Jani Raerinne - 2011 - Biology and Philosophy 26 (1):99-111.
    I analyze here biological regression equations known in the literature as allometries and scaling laws. My focus is on the alleged lawlike status of these equations. In particular I argue against recent views that regard allometries and scaling laws as representing universal, non-continent, and/or strict biological laws. Although allometries and scaling laws appear to be generalizations applying to many taxa, they are neither universal nor exceptionless. In fact there appear to be exceptions to all of them. Nor are the constants (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Scientific Explanation and the Causal Structure of the World.Wesley C. Salmon - 1984 - Princeton University Press.
    The philosophical theory of scientific explanation proposed here involves a radically new treatment of causality that accords with the pervasively statistical character of contemporary science. Wesley C. Salmon describes three fundamental conceptions of scientific explanation--the epistemic, modal, and ontic. He argues that the prevailing view is untenable and that the modal conception is scientifically out-dated. Significantly revising aspects of his earlier work, he defends a causal/mechanical theory that is a version of the ontic conception. Professor Salmon's theory furnishes a robust (...)
    Download  
     
    Export citation  
     
    Bookmark   1052 citations  
  • Explanatory unification and the causal structure of the world.Philip Kitcher - 1962 - In Philip Kitcher & Wesley C. Salmon (eds.), Scientific Explanation. Univ of Minnesota Pr. pp. 410-505.
    Download  
     
    Export citation  
     
    Bookmark   518 citations  
  • Exporting causal knowledge in evolutionary and developmental biology.Sandra D. Mitchell - 2008 - Philosophy of Science 75 (5):697-706.
    In this article I consider the challenges for exporting causal knowledge raised by complex biological systems. In particular, James Woodward’s interventionist approach to causality identified three types of stability in causal explanation: invariance, modularity, and insensitivity. I consider an example of robust degeneracy in genetic regulatory networks and knockout experimental practice to pose methodological and conceptual questions for our understanding of causal explanation in biology. †To contact the author, please write to: Department of History and Philosophy of Science, University of (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1664 citations  
  • Sensitive and insensitive causation.James Woodward - 2006 - Philosophical Review 115 (1):1-50.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Explanatory generalizations, part I: A counterfactual account.James Woodward & Christopher Hitchcock - 2003 - Noûs 37 (1):1–24.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Explanation and invariance in the special sciences.James Woodward - 2000 - British Journal for the Philosophy of Science 51 (2):197-254.
    This paper describes an alternative to the common view that explanation in the special sciences involves subsumption under laws. According to this alternative, whether or not a generalization can be used to explain has to do with whether it is invariant rather than with whether it is lawful. A generalization is invariant if it is stable or robust in the sense that it would continue to hold under a relevant if it is stable or robust in the sense that it (...)
    Download  
     
    Export citation  
     
    Bookmark   176 citations  
  • Comment on Hausman & Woodward on the causal Markov condition.Daniel Steel - 2006 - British Journal for the Philosophy of Science 57 (1):219-231.
    Woodward present an argument for the Causal Markov Condition (CMC) on the basis of a principle they dub ‘modularity’ ([1999, 2004]). I show that the conclusion of their argument is not in fact the CMC but a substantially weaker proposition. In addition, I show that their argument is invalid and trace this invalidity to two features of modularity, namely, that it is stated in terms of pairwise independence and ‘arrow-breaking’ interventions. Hausman & Woodward's argument can be rendered valid through a (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Against modularity, the causal Markov condition, and any link between the two: Comments on Hausman and Woodward.Nancy Cartwright - 2002 - British Journal for the Philosophy of Science 53 (3):411-453.
    In their rich and intricate paper ‘Independence, Invariance, and the Causal Markov Condition’, Daniel Hausman and James Woodward ([1999]) put forward two independent theses, which they label ‘level invariance’ and ‘manipulability’, and they claim that, given a specific set of assumptions, manipulability implies the causal Markov condition. These claims are interesting and important, and this paper is devoted to commenting on them. With respect to level invariance, I argue that Hausman and Woodward's discussion is confusing because, as I point out, (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Synthesizing activities and interactions in the concept of a mechanism.James G. Tabery - 2004 - Philosophy of Science 71 (1):1-15.
    Stuart Glennan, and the team of Peter Machamer, Lindley Darden, and Carl Craver have recently provided two accounts of the concept of a mechanism. The main difference between these two versions rests on how the behavior of the parts of the mechanism is conceptualized. Glennan considers mechanisms to be an interaction of parts, where the interaction between parts can be characterized by direct, invariant, change-relating generalizations. Machamer, Darden, and Craver criticize traditional conceptualizations of mechanisms which are based solely on parts (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Mathematical explanation and the theory of why-questions.David Sandborg - 1998 - British Journal for the Philosophy of Science 49 (4):603-624.
    Van Fraassen and others have urged that judgements of explanations are relative to why-questions; explanations should be considered good in so far as they effectively answer why-questions. In this paper, I evaluate van Fraassen's theory with respect to mathematical explanation. I show that his theory cannot recognize any proofs as explanatory. I also present an example that contradicts the main thesis of the why-question approach—an explanation that appears explanatory despite its inability to answer the why-question that motivated it. This example (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Explanation in two dimensions: Diagrams and biological explanation.Laura Perini - 2005 - Biology and Philosophy 20 (2-3):257-269.
    Molecular biologists and biochemists often use diagrams to present hypotheses. Analysis of diagrams shows that their content can be expressed with linguistic representations. Why do biologists use visual representations instead? One reason is simple comprehensibility: some diagrams present information which is readily understood from the diagram format, but which would not be comprehensible if the same information was expressed linguistically. But often diagrams are used even when concise, comprehensible linguistic alternatives are available. I explain this phenomenon by showing why diagrammatic (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)Studies in the logic of explanation.Carl Gustav Hempel & Paul Oppenheim - 1948 - Philosophy of Science 15 (2):135-175.
    To explain the phenomena in the world of our experience, to answer the question “why?” rather than only the question “what?”, is one of the foremost objectives of all rational inquiry; and especially, scientific research in its various branches strives to go beyond a mere description of its subject matter by providing an explanation of the phenomena it investigates. While there is rather general agreement about this chief objective of science, there exists considerable difference of opinion as to the function (...)
    Download  
     
    Export citation  
     
    Bookmark   717 citations  
  • Causation: One word, many things.Nancy Cartwright - 2004 - Philosophy of Science 71 (5):805-819.
    We currently have on offer a variety of different theories of causation. Many are strikingly good, providing detailed and plausible treatments of exemplary cases; and all suffer from clear counterexamples. I argue that, contra Hume and Kant, this is because causation is not a single, monolithic concept. There are different kinds of causal relations imbedded in different kinds of systems, readily described using thick causal concepts. Our causal theories pick out important and useful structures that fit some familiar cases—cases we (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1357 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   563 citations  
  • Relations among fields: Mendelian, cytological and molecular mechanisms.Lindley Darden - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):349-371.
    Philosophers have proposed various kinds of relations between Mendelian genetics and molecular biology: reduction, replacement, explanatory extension. This paper argues that the two fields are best characterized as investigating different, serially integrated, hereditary mechanisms. The mechanisms operate at different times and contain different working entities. The working entities of the mechanisms of Mendelian heredity are chromosomes, whose movements serve to segregate alleles and independently assort genes in different linkage groups. The working entities of numerous mechanisms of molecular biology are larger (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)4 decades of scientific explanation.Wesley C. Salmon - 1989 - Minnesota Studies in the Philosophy of Science 13:3-219.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • (1 other version)Four Decades of Scientific Explanation.Wesley C. Salmon & Anne Fagot-Largeault - 1989 - History and Philosophy of the Life Sciences 16 (2):355.
    As Aristotle stated, scientific explanation is based on deductive argument--yet, Wesley C. Salmon points out, not all deductive arguments are qualified explanations. The validity of the explanation must itself be examined. _Four Decades of Scientific Explanation_ provides a comprehensive account of the developments in scientific explanation that transpired in the last four decades of the twentieth century. It continues to stand as the most comprehensive treatment of the writings on the subject during these years. Building on the historic 1948 essay (...)
    Download  
     
    Export citation  
     
    Bookmark   516 citations  
  • Dimensions of scientific law.Sandra D. Mitchell - 2000 - Philosophy of Science 67 (2):242-265.
    Biological knowledge does not fit the image of science that philosophers have developed. Many argue that biology has no laws. Here I criticize standard normative accounts of law and defend an alternative, pragmatic approach. I argue that a multidimensional conceptual framework should replace the standard dichotomous law/ accident distinction in order to display important differences in the kinds of causal structure found in nature and the corresponding scientific representations of those structures. To this end I explore the dimensions of stability, (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Explanation in Mathematics.Paolo Mancosu - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    The philosophical analysis of mathematical explanations concerns itself with two different, although connected, areas of investigation. The first area addresses the problem of whether mathematics can play an explanatory role in the natural and social sciences. The second deals with the problem of whether mathematical explanations occur within mathematics itself. Accordingly, this entry surveys the contributions to both areas, it shows their relevance to the history of philosophy and science, it articulates their connection, and points to the philosophical pay-offs to (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Explanatory generalizations, part II: Plumbing explanatory depth.Christopher Hitchcock & James Woodward - 2003 - Noûs 37 (2):181–199.
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Independence, invariance and the causal Markov condition.Daniel M. Hausman & James Woodward - 1999 - British Journal for the Philosophy of Science 50 (4):521-583.
    This essay explains what the Causal Markov Condition says and defends the condition from the many criticisms that have been launched against it. Although we are skeptical about some of the applications of the Causal Markov Condition, we argue that it is implicit in the view that causes can be used to manipulate their effects and that it cannot be surrendered without surrendering this view of causation.
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Mechanisms and the nature of causation.Stuart S. Glennan - 1996 - Erkenntnis 44 (1):49--71.
    In this paper I offer an analysis of causation based upon a theory of mechanisms-complex systems whose internal parts interact to produce a system's external behavior. I argue that all but the fundamental laws of physics can be explained by reference to mechanisms. Mechanisms provide an epistemologically unproblematic way to explain the necessity which is often taken to distinguish laws from other generalizations. This account of necessity leads to a theory of causation according to which events are causally related when (...)
    Download  
     
    Export citation  
     
    Bookmark   441 citations  
  • Law and explanation in biology: Invariance is the kind of stability that matters.James Woodward - 2001 - Philosophy of Science 68 (1):1-20.
    This paper develops an account of explanation in biology which does not involve appeal to laws of nature, at least as traditionally conceived. Explanatory generalizations in biology must satisfy a requirement that I call invariance, but need not satisfy most of the other standard criteria for lawfulness. Once this point is recognized, there is little motivation for regarding such generalizations as laws of nature. Some of the differences between invariance and the related notions of stability and resiliency, due respectively to (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Dissecting explanatory power.Petri Ylikoski & Jaakko Kuorikoski - 2010 - Philosophical Studies 148 (2):201–219.
    Comparisons of rival explanations or theories often involve vague appeals to explanatory power. In this paper, we dissect this metaphor by distinguishing between different dimensions of the goodness of an explanation: non-sensitivity, cognitive salience, precision, factual accuracy and degree of integration. These dimensions are partially independent and often come into conflict. Our main contribution is to go beyond simple stipulation or description by explicating why these factors are taken to be explanatory virtues. We accomplish this by using the contrastive-counterfactual approach (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • (1 other version)Causality without counterfactuals.Wesley C. Salmon - 1994 - Philosophy of Science 61 (2):297-312.
    This paper presents a drastically revised version of the theory of causality, based on analyses of causal processes and causal interactions, advocated in Salmon (1984). Relying heavily on modified versions of proposals by P. Dowe, this article answers penetrating objections by Dowe and P. Kitcher to the earlier theory. It shows how the new theory circumvents a host of difficulties that have been raised in the literature. The result is, I hope, a more satisfactory analysis of physical causality.
    Download  
     
    Export citation  
     
    Bookmark   155 citations  
  • Pragmatic laws.Sandra D. Mitchell - 1997 - Philosophy of Science 64 (4):479.
    Beatty, Brandon, and Sober agree that biological generalizations, when contingent, do not qualify as laws. Their conclusion follows from a normative definition of law inherited from the Logical Empiricists. I suggest two additional approaches: paradigmatic and pragmatic. Only the pragmatic represents varying kinds and degrees of contingency and exposes the multiple relationships found among scientific generalizations. It emphasizes the function of laws in grounding expectation and promotes the evaluation of generalizations along continua of ontological and representational parameters. Stability of conditions (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Salmon on explanatory relevance.Christopher Read Hitchcock - 1995 - Philosophy of Science 62 (2):304-320.
    One of the motivations for Salmon's (1984) causal theory of explanation was the explanatory irrelevance exhibited by many arguments conforming to Hempel's covering-law models of explanation. However, the nexus of causal processes and interactions characterized by Salmon is not rich enough to supply the necessary conception of explanatory relevance. Salmon's (1994) revised theory, which is briefly criticized on independent grounds, fares no better. There is some possibility that the two-tiered structure of explanation described by Salmon (1984) may be pressed into (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Manipulation and the causal Markov condition.Daniel Hausman & James Woodward - 2004 - Philosophy of Science 71 (5):846-856.
    This paper explores the relationship between a manipulability conception of causation and the causal Markov condition (CM). We argue that violations of CM also violate widely shared expectations—implicit in the manipulability conception—having to do with the absence of spontaneous correlations. They also violate expectations concerning the connection between independence or dependence relationships in the presence and absence of interventions.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (2 other versions)Counterfactuals.David Lewis - 1973 - Tijdschrift Voor Filosofie 36 (3):602-605.
    Download  
     
    Export citation  
     
    Bookmark   1339 citations  
  • (1 other version)Studies in the Logic of Explanation.Carl Hempel & Paul Oppenheim - 1948 - Journal of Symbolic Logic 14 (2):133-133.
    Download  
     
    Export citation  
     
    Bookmark   533 citations  
  • Ceteris paribus — an inadequate representation for biological contingency.Sandra D. Mitchell - 2002 - Erkenntnis 57 (3):329-350.
    It has been claimed that ceteris paribus laws, rather than strict laws are the proper aim of the special sciences. This is so because the causal regularities found in these domains are exception-ridden, being contingent on the presence of the appropriate conditions and the absence of interfering factors. I argue that the ceteris paribus strategy obscures rather than illuminates the important similarities and differences between representations of causal regularities in the exact and inexact sciences. In particular, a detailed account of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Aspects of Scientific Explanation.Michael D. Resnik - 1966 - Philosophy and Phenomenological Research 27 (1):139-140.
    Download  
     
    Export citation  
     
    Bookmark   149 citations  
  • 3.Wesley C. Salmon - 1984 - In Scientific Explanation and the Causal Structure of the World. Princeton University Press. pp. 78-109.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)What is a mechanism? A counterfactual account.Jim Woodward - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S366-S377.
    This paper presents a counterfactual account of what a mechanism is. Mechanisms consist of parts, the behavior of which conforms to generalizations that are invariant under interventions, and which are modular in the sense that it is possible in principle to change the behavior of one part independently of the others. Each of these features can be captured by the truth of certain counterfactuals.
    Download  
     
    Export citation  
     
    Bookmark   193 citations  
  • (1 other version)Interlevel experiments and multilevel mechanisms in the neuroscience of memory.Carl F. Craver - 2002 - Philosophy of Science Supplemental Volume 69 (3):S83-S97.
    The dominant neuroscientific theory of spatial memory is, like many theories in neuroscience, a multilevel description of a mechanism. The theory links the activities of molecules, cells, brain regions, and whole organisms into an integrated sketch of an explanation for the ability of organisms to navigate novel environments. Here I develop a taxonomy of interlevel experimental strategies for integrating the levels in such multilevel mechanisms. These experimental strategies include activation strategies, interference strategies, and additive strategies. These strategies are mutually reinforcing, (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Modeling mechanisms.Stuart Glennan - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):443-464.
    Philosophers of science increasingly believe that much of science is concerned with understanding the mechanisms responsible for the production of natural phenomena. An adequate understanding of scientific research requires an account of how scientists develop and test models of mechanisms. This paper offers a general account of the nature of mechanical models, discussing the representational relationship that holds between mechanisms and their models as well as the techniques that can be used to test and refine such models. The analysis is (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • Reductive Explanation: A Functional Account.William C. Wimsatt - 1972 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1974:671-710.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Applied ecology and the logic of case studies.Kristin Shrader-Frechette & Earl D. Mccoy - 1994 - Philosophy of Science 61 (2):228-249.
    Because of the problems associated with ecological concepts, generalizations, and proposed general theories, applied ecology may require a new "logic" of explanation characterized neither by the traditional accounts of confirmation nor by the logic of discovery. Building on the works of Grunbaum, Kuhn, and Wittgenstein, we use detailed descriptions from research on conserving the Northern Spotted Owl, a case typical of problem solving in applied ecology, to (1) characterize the method of case studies; (2) survey its strengths; (3) summarize and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Strategies for Discovering Mechanisms: Schema Instantiation, Modular Subassembly, Forward/Backward Chaining.Lindley Darden - 2002 - Philosophy of Science 69 (S3):S354-S365.
    Discovery proceeds in stages of construction, evaluation, and revision. Each of these stages is constrained by what is known or conjectured about what is being discovered. A new characterization of mechanism aids in specifying what is to be discovered when a mechanism is sought. Guidance in discovering mechanisms may be provided by the reasoning strategies of schema instantiation, modular subassembly, and forward/backward chaining. Examples are found in mechanisms in molecular biology, biochemistry, immunology, and evolutionary biology.
    Download  
     
    Export citation  
     
    Bookmark   67 citations