Switch to: Citations

Add references

You must login to add references.
  1. From statistical knowledge bases to degrees of belief.Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern & Daphne Koller - 1996 - Artificial Intelligence 87 (1-2):75-143.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Objective Bayesianism and the maximum entropy principle.Jürgen Landes & Jon Williamson - 2013 - Entropy 15 (9):3528-3591.
    Objective Bayesian epistemology invokes three norms: the strengths of our beliefs should be probabilities, they should be calibrated to our evidence of physical probabilities, and they should otherwise equivocate sufficiently between the basic propositions that we can express. The three norms are sometimes explicated by appealing to the maximum entropy principle, which says that a belief function should be a probability function, from all those that are calibrated to evidence, that has maximum entropy. However, the three norms of objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Justifying Objective Bayesianism on Predicate Languages.Jürgen Landes & Jon Williamson - 2015 - Entropy 17 (4):2459-2543.
    Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian norms in the case in which the background language is a first-order predicate language, with a view to applying the resulting formalism (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Asymptotic conditional probabilities: The non-unary case.Adam J. Grove, Joseph Y. Halpern & Daphne Koller - 1996 - Journal of Symbolic Logic 61 (1):250-276.
    Motivated by problems that arise in computing degrees of belief, we consider the problem of computing asymptotic conditional probabilities for first-order sentences. Given first-order sentences φ and θ, we consider the structures with domain {1,..., N} that satisfy θ, and compute the fraction of them in which φ is true. We then consider what happens to this fraction as N gets large. This extends the work on 0-1 laws that considers the limiting probability of first-order sentences, by considering asymptotic conditional (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Invariant Equivocation.Jürgen Landes & George Masterton - 2017 - Erkenntnis 82 (1):141-167.
    Objective Bayesians hold that degrees of belief ought to be chosen in the set of probability functions calibrated with one’s evidence. The particular choice of degrees of belief is via some objective, i.e., not agent-dependent, inference process that, in general, selects the most equivocal probabilities from among those compatible with one’s evidence. Maximising entropy is what drives these inference processes in recent works by Williamson and Masterton though they disagree as to what should have its entropy maximised. With regard to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Equivocation Axiom on First Order Languages.Soroush Rafiee Rad - 2017 - Studia Logica 105 (1):121-152.
    In this paper we investigate some mathematical consequences of the Equivocation Principle, and the Maximum Entropy models arising from that, for first order languages. We study the existence of Maximum Entropy models for these theories in terms of the quantifier complexity of the theory and will investigate some invariance and structural properties of such models.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Maximum Entropy Inference with Quantified Knowledge.Owen Barnett & Jeff Paris - 2008 - Logic Journal of the IGPL 16 (1):85-98.
    We investigate uncertain reasoning with quantified sentences of the predicate calculus treated as the limiting case of maximum entropy inference applied to finite domains.
    Download  
     
    Export citation  
     
    Bookmark   9 citations